CyberLife Technology Ltd.

Copyright(1998, CyberLife Technology Ltd.
Company Confidential

Copyright(1999, CyberLife Technology Ltd.

[image: image1.emf]
Creatures 3d

QMS 1.2 System Architecture

Status:

Company Confidential

The contents of this report are not to be reproduced in whole or in part, nor disclosed to third parties, without the consent of CyberLife Technology Ltd. The information is presented in good faith but CyberLife assumes no liability for any consequences of its use. Its presentation does not imply a licence under any patent, trademark, or copyright.

Any copy of this document should not be considered the latest issue. This can be found in the CLabs Technology SourceSafe database in file ‘Creatures 3d/Documentation/QMS1.2 System Architecture.doc’.

Quality Record

Prepared by
Reviewed by
Approved by
Date

Robin E. Charlton
Christian Erskine

Amendment Record

Issue number
Release Date
Description of changes

0.9
22-10-99
Initial draft.

1.0
8-12-99
Updated in response to review.

Contents

41.
Introduction

2.
Definitions
4
3.
Target platform
6
4.
Performance requirements
6
5.
System architecture
6
5.1.
Overview
7
5.2.
Application
8
5.3.
Display model & renderer
8
Display features
8
5.4.
Animation controller
10
5.5.
Environment model and physics
10
5.6.
Sound
11
5.7.
Network manager
12
5.8.
Origin Cell Model
13
5.9.
Origin Script languages
13
5.10.
User-input
13
5.11.
Behaviour library
13
5.12.
Support libraries
13
Geometry
13
Maths
13
Os
13
Origin Common
14
Origin System
14
6.
Handling game assets or resources
15
7.
Agent systems
16
7.1.
Interfacing Origin cells to engine systems
16
Agent/ creature systems
16
Agent/ creature building blocks
17
Agent/ creatures
17
7.3.
Environment systems
18
7.4.
Game systems
18
8.
Networking
19
8.1.
Networking – a discussion
19
Choosing a network model
19
Limitations of the Internet
21
Techniques for minimising bandwidth requirements
21
Techniques for minimising the effects of latency
22
Techniques to address packet loss
22
8.2.
Creatures 3d network architecture
23
Overview
23
Client-server communication
24
Objects and proxy objects
24
Client side simulation
26
A network manager
28
9.
References
30
10.
Appendix A: Data dictionary
31
11.
Appendix B: Build process
31
11.1.
Build script
31
Requirements
31
Implementation
32
11.2.
Install program
32
12.
Appendix C: Automated testing
32
13.
Appendix D: Localisation
33
13.1.
Requirements
33
13.2.
A summary of software support for different character sets
33
13.3.
Design and general approach
33
Catalogue files (Creatures3)
34
Filename localisation (Creatures3)
34
Standard string type
34
13.4.
Code tables
35
Language codes
35
ISO 3166 Country codes
36
14.
Appendix E: Art plan
40

1. Introduction

This document presents the System Architecture for Creatures 3d[1]. Included is an overview of system components and how they interact; a summary of the agent systems required; a list of the types of game assets or resources the engine will handle; and; a discussion of the issues involved with networking.

Knowledge of Origin is assumed.

2. Definitions

ANSI
American National Standards Institute. The character set used by Microsoft Windows in America and Europe. ANSI uses a single byte for each character; consequently it cannot support non-western languages.

DBCS
Double-Byte Character Set. A character set used by Microsoft Windows in most parts of Asia. In DBCS, ASCII characters are represented by 1 byte, and Japanese, Korean and other eastern Asian characters are two bytes in length.

Billboard
A 2 dimensional visual that is oriented to always face the viewpoint. In Creatures 3d they will be used for distant environment visuals such as the sun, moon, high cloud, etc.
Note: confusingly DirectX Retained Mode refers to such visuals as decals! However the graphics programming community do not seem to use this definition.

Decal
A visual that is layered on top of an existing visual. Decals will be used in Creatures 3d for such things as creature footprints, ground marks from dragging objects, etc. Remember those transfers you

Environment
The collection of one or more regions which make up the simulation’s visual ‘universe’. Note that the environment may contain visuals outside of its collection of regions, e.g. clouds.

Host user
When two users are connected via the Visitor Player feature the user whose computer is providing the shared region is called the Host user.

Material
A property that determines how a surface appears. This includes how the surface reflects ambient and diffuse light; what light (if any) is emitted by the surface; and what specular reflection is present. It also includes zero or more textures and special render states such as alpha blending, stencil buffering, fogging, etc.

Portal
A unidirectional connection between two regions. Portals consist of geometry, region information and a transformation. Portal geometry is a polygon defined by 3 or more co-planar points. Portal region information is simply the name of the region beyond the portal; the destination. The portal transformation is a geometric transformation that is to be applied to the viewer when looking through the portal.

Proxy object
Cf. simulated object. An object on a computer that is a limited representation of an object simulated on a remote computer. E.g. a simulated Norn will require brain and biochemistry data whilst a proxy Norn only requires the data to describe its visual and physical appearance.
Within Origin declaration of proxy status should occur at the cell level; i.e. either a cell has a proxy, or it doesn’t.

Region
An independent subdivision of the environment model. To facilitate occlusion culling regions must be relatively concave or enclosed.

Simulated object
Cf. Proxy object. A genuine agent simulated on a computer. Simulated objects may be mirrored on remote computers by proxy objects.

Surface
A mesh with a single material.

Texture
A rectangular array of pixels that can be applied to a mesh when it is rendered.

UNICODE
A character encoding scheme devised by ISO (International Standards Institute) which uses 2 bytes for every character. UNICODE supports just about every character and symbol in every language. It is used in COM, Microsoft Visual Basic; is supported by Windows NT, but is not directly supported in Windows 95/ 98. Note there is no relationship between UNICODE and DBCS.

Visitor user
When two users are connected via the Visitor Player feature the user who is connected to a remote computer is called the Visitor user.

Visual
The collection of surfaces which compose a single visual entity. Surfaces within a visual often have constraints that make them interdependent. As a result they cannot be rendered independently; e.g. a skinned character requires that all surfaces connect seamlessly without crack artefacts.

Target platform

The minimum target hardware platform for the Creatures3d engine is as follows:

Processor
Intel Pentium III 450Mhz (or comparable)

RAM
64MB

Free hard disk space
400MB

CD-ROM
17X (min) CD-ROM Drive

Graphics card
 nVidia RIVA TNT2 chipset with 16MB VRAM (or comparable)

Sound card
Creative Labs SoundBlaster 64 PCI (or comparable).

The target software platform is Microsoft Windows 95/98/2000 (with DirectX drivers). Windows NT will not be supported.

Despite the requirement to support only Microsoft/Intel platforms the Creatures 3d engine will developed with platform independence in mind. Abstract data types will encapsulate all platform-specific software systems. In general this is good practice as it (a) supports future unforeseen reuse needs; and (b) forces developers to appreciate the implications of platform specific assumptions or 3rd party libraries.

3. Performance requirements

On the minimum target platform, the engine must sustain 30 frames per second with a game environment consisting of:

· 20 environment regions, each consisting of approximately 5000 polygons

· 16 complex creatures (with large neural network brains and biochemistry’s)

· 2000 simple agents, with approximately 25 visible per scene; each with an average 200 polygons.
(Of course this is dependent upon the complexity of the agents).

4. System architecture

The Creatures 3d engine is based upon Origin[6]. The philosophy of Origin is to provide a general-purpose platform for agent engineering. Therefore the system architecture of Creatures 3d promotes a strong separation between game engine software systems and game agent software systems.

4.1. Overview

[image: image2.wmf]Client

-IP address

-Camera data

-Listener data

Communication

Language

Last sent Proxy

list

Cell

Client local

cells to proxy

list

Global cells to

proxy list

4.2. Application

A standard 32 bit Windows application. It has the following requirements:

· Window creation, message pump and application timer loop
The application must regulate the use of CPU time to each of the subsystems within the engine. It must time the execution of the program and e.g. drop renderer frames or lower the rate of the physical simulation to maintain a stable simulation update rate.

· Windows message handling

· Application parameter handling

· Simulation object
i.e. a structural wrapper around the main system components.

· Support for client-server networking.

4.3. Display model & renderer

The display system consists of two major components:

· Display model
This includes a model of the scene being rendered, a range of visuals and the file resources necessary to create them. The display model queries the environment model each frame for a list of 3d positioned entities to send to the display renderer. It also manages a collection of user interface visuals, that is 3d or 2d visuals which are positioned in 2d-screen space, rather than in the 3d environment.

· Display renderer
The display renderer provides a platform independent low-level polygon renderer. This is currently implemented using Microsoft DirectX Immediate Mode. However this could be rewritten using e.g. OpenGL with minimal effect on the display model. Note the render exposes a right-handed co-ordinate system interface.

The display model and renderer will provide only back end support for animation. That is, they will manage visuals, provide routines to manipulate them, and the resources that store them; but will not provide support for controlling or sequencing animations. The Animation controller does this.

Display features

The Display model and renderer must support the following features:

Interpolated or blended meshes

Traditional mesh interpolation or blending is well suited to simple cartoon-style animation tasks; examples include balloons inflating; balls which squash when they bounce; etc. Each frame of animation is specified as a separate mesh; each renderer frame two meshes are blended together to allow the animation to smoothly move from one frame to another.

Mesh interpolation is also useful for asset generation. E.g. we could generate Creatures meshes by modelling a range of standard meshes such as fat Norn and thin Norn, then blending them together by different weightings.

Skinned and skeletal mesh deformation

Complex agents will require skeletal animation. They will be modelled as a polygonal mesh (a skin) modelled around a hierarchical set of bones (a skeleton). Animations will be stored in terms of skeleton poses; each renderer frame the mesh will be deformed in response to the skeletal pose. Skeletal animation has the advantages that it is much more efficient on memory than standard mesh deformation; and since the mesh is stretched, crack artefacts at joints are eliminated.

Control point mesh deformation

Control point deformation is similar to skeletal deformation. Rather than modelling a mesh around a set of bones, it is modelled around a set of control points. Animations are stored in terms of control point positions; each frame the mesh will be deformed in response to the control point pose. Control point deformation has similar advantages to skeletal deformation. Its primary use in Creatures 3d will be for creature facial expressions.

Texture animation

Texture animation is the analogue of traditional 2d-sprite animation. Each frame of animation is specified as a static image that is applied as a texture to a mesh when rendering. Texture animation is suited to tasks such as learning machine displays; water; etc.

Some effects may be created using procedural textures. This may be done as a pre-processing step e.g. in 3DS MAX, which simply results in a series of textures. Alternatively this may be done at tun-time to generate e.g. Creature skin.

Billboards and decals

Billboards are 2 dimensional visuals that are oriented to always face the camera. In Creatures 3d they will be used for distant environment visuals such as the sun, moon, high cloud, etc.

Decals are visuals that are layered on top of an existing visual. This involves deforming the decal’s mesh so it correctly matches the mesh under which it is positioned. Decals will be used in Creatures 3d for such things as creature footprints, ground marks from dragging objects, etc.

Particle effects

Particle effects are a form of billboard. They used where a large number of visuals are required which interact with each other. Examples include: snow, water spray, etc.

Shadows and lightmaps

Shadows and lighting effects are required to give the impression of direct light sources. A variety of techniques are available such as projecting shadows from light sources through each object in the environment; placing shadow-decals under objects; and blending textures with shadows pre-rendered on them. At present it is not clear which approach will offer the best result/performance trade-off.

Progressive level of detail

The display model will support progressive meshes, also known as continuous level of detail. This will allow a mesh to be modelled not simply as a static collection of vertices and faces, but as a scaleable detail ordered sequence of vertices and faces. The surface will dynamically add or remove faces (polygons) according to its distance from the scene’s camera. This will allow 3d models to be built using much higher numbers of polygons than is traditionally possible.

Note a small number of 3rd party progressive level of detail solutions are available. Since mesh handling underpins all of the display components listed above, Creatures 3d will develop its own solution.

Text fonts

2d text fonts are required for head-up display GUI systems.

Dynamic lights

Point, spot and (parallel) directional lights must be supported.

Dynamic material control

Each visual in the display must expose an interface to its surfaces’ material properties. This will allow the material to be modified in response to a change internal state. E.g. a ‘grass’ material will change according to the amount of moisture in the ground.

Note that the task of mapping an internal model of say, water flow, to the corresponding surfaces in the associated visual is not trivial.

4.4. Animation controller

The animation controller is responsible for storing and sequencing animations. This includes all forms of animation described in the Display library.

If Creatures 3d were using physical controller techniques to model animation it would seem appropriate to model skeletons using Origin cells. Each bone and joint would then be responsible for its own motion; bottom-up. However, Creatures 3d will use key-framed animation, which is in general top-down and prescriptive. For the most part creature behaviour scripts will simply request artist specified animations for actions such as walk, run, jump, etc. Direct cell behaviour control will be required for some body parts such as the head, ear and tail orientation; and facial expression of creatures. It seems sensible to separate out that which is cell behaviour controlled and that which is prescribed by key-frame animation.

The animation controller requires the following components:

· Skeleton models
Hierarchical bone models for each creature in the game. Skeleton models will be constructed in the animation controller and possibly represented inside the environment physics system. The exact details of this are to be determined.
Additionally skeleton models must expose an interface to allow cell behaviours to override their animations.

· Animation and pose tables
A database of pose frames organised into animation sequences.

· Animation state machine
The state machine will govern how animation sequences are interpolated; that is, the transition from one sequence to the next. E.g. a creature which is running towards food, must first slow down and stop running before crouching to pickup the food.

4.5. Environment model and physics

The Origin Cell Model provides an abstract model of agent structure and behaviour. The environment model provides a 3d physical space in which to embed cell model constructed agents[5].

Many engine and agent systems require a spatial model of the environment; e.g. clipping off-screen visuals when rendering; local area scanning for creature vision; etc. The environment model provides a single shared representation of the game environment. Without this each system would need to maintain its own model. This would increase the size/ complexity of the program code and data stored; and create the problem of keeping multiple environment models synchronised when agents are constantly moving! A single unified model updated internally avoids these problems.

The environment model and physics includes:

· Spatial partitioning
Efficient processing of the environment requires it to be partitioned into meaningful subdivisions. The environment model provides two levels of partitioning. At the coarse level it is divided into Regions, connected by Portals. In parallel with this the rigid body simulator system will subdivide the environment internally.

· Occlusion
Occlusion is supported at the region/ portal level. This allows e.g. visuals and sounds in neighbouring regions to be inexpensively excluded if they should not be seen or heard. No dynamic or object-based occlusion is supported as this will be prohibitively computationally expensive.

· Entities
Entities are structural wrappers for Origin cells. They enable cells and other engine system objects to be placed in the environment. A typical entity will store a pointer to a cell and its visual.

· Cell model message broadcasting
Inter-agent communication is typically done through the environment, e.g. creature speech. Sounds naturally propagate through the environment: they have a certain direction or cone of transmission, a range, are affected by the medium through which they travel such as air or water. Message broadcasting must be constrained by the occlusion modelled in the region/portal partitioning.

· Rigid body simulator
The environment model will incorporate a rigid body simulator. This will provide obstacle/ collision detection, force resolution, object stacking, springs and other connection constraints. At the time of writing the Ipion Software Virtual Physics SDK (integrated into Origin) is planned to be used to provide this functionality. A mechanism is required to specify the physical form of an object.

4.6. Sound

The sound system will enable cells to play and control multiple sound samples[11]. It will be used to provide general agent sounds, creature speech and in-game music.

All sounds will be provided as mono samples. The Sound system must position the sound sources in stereo or 3d space as requested by an agent. A summary of requirements is as follows:

· 3d and stereo positioning and orientation of sound sources

· Sound resource management

· Listener control

· Origin cell model representation
Sound and listener state data must be stored in the Origin cell model.

· Sound hardware management
The minimum target hardware does not specify a sound card with 3d hardware mixing support. The CPU cost of positioning 3D sounds using software mixing is likely to be prohibitively expensive. In this instance sounds should be mixed in stereo space.

· Sound occlusion
When geometry between a sound and the listener prevents a sound being heard, it is said to be occluded.

· Sound reverberation
High order reflections create an effect called reverberation. This provides both localisation cues and cues to the size, shape and type of room or environment that the listener is in.

· Sound reflection
Reflection is one of the major effects the environment has on a sound as it is propagated. It occurs when sounds collide with surfaces in the environment.

Standards for 3d positioned sounds are in their infancy at present. The major players are Creative Labs (now licensing Environmental Audio eXtensions technology to Microsoft DirectX) and Aureal Semiconductor A3D. To achieve the best results on all users’ machines both standards should be supported. At the time of writing the release of Aureal A3D 3.0 is imminent. This may offer a scaleable solution for all hardware.

4.7. Network manager

A discussion of the issues involved with networking is presented in Section 8. To summarise, Creatures 3d will employ a strict client-server architecture. Client and server software will be provided by a single Creatures 3d executable which will be configured at run-time to provide appropriate functionality.

The network manager is responsible for maintaining client-server communication. It will be configured at run-time to act as a server or a client for the game. The network manager must manage connections between client and server computers, computer client updates, and transfer simulation updates, text messages etc.

Key features:

· Client-Server application framework
A standard windows application which can be configured as either the client or the server in a networked simulation.

· Network communications language
A command language is required for the network communications. This will be used to encode and decode the data part of the network packets.

· Proxy cell register
<Server>A list of simulation cells which must be proxied on the clients.
<Client>A map of simulation cell identifiers to client side proxy cells.

· Client list <Server only>
Details of each client connected to the server.

· Server details <Client only>

· Babel network communications
The low level network communications library.

· Client prediction or dead reckoning algorithms
Network clients must predict the state of their (proxied) simulation between network updates. In the simplest case, this could simply mean instantiating the physics engine on the client. Network servers may also simulate clients in order to reduce the amount of client updates necessary.

4.8. Origin Cell Model

The origin cell model provides an abstract model of structure and behaviour designed to enable the construction of very large numbers of highly interconnected autonomous agents. As it is documented in depth elsewhere [7] no further information will be given here.

4.9. Origin Script languages

The origin script languages provide a mechanism for driving the cell model from soft-code[9]. The script languages consist of three components:

· Cell definition language (also known as the Object definition language)
used for specifying static cell types; that is, the structure of each type of cell required.

· Behaviour language
used for specifying the dynamic behaviours cells may perform.

· Property language
used for specifying non-brittle syntactically safe evaluation rules. Property language scripts may be embedded within a genome, as they are able to withstand crossover errors and mutations.

4.10. User-input

The user-input system provides input device handling functionality[10]. It translates keyboard and mouse input into Origin cell model messages that may then be handled by cells or transmitted across a network.

4.11. Behaviour library

Many Creatures 3d agents systems will require C++ programming support on an individual basis. This will provided by hard-coded cell behaviours. These will be stored in the behaviour library.

4.12. Support libraries

The lower system libraries provide a base layer upon which to build the major engine systems. They are as follows:

Geometry

The Geometry library will contain ‘definitive’ implementations of classes for 3d geometric primitives. This includes vectors, matrices, quaternians and planes.

Maths

The Maths library will contain general-purpose maths routines such as optimised replacements for C++ standard library functions, e.g. square root, sine, cosine, floating point to integer conversion, etc.

Os

The Os library will provide classes that encapsulate standard operating system services such as file system access. It will include the following:

· File
A general purpose file class.

· Resource & ResourceManager
A general purpose file resource and resource manager. Abstracts file based game assets such as textures as shareable system resources. All asset file access will be provided through these components.
Should any form of file bundling, encryption or general-purpose compression be required it should be implemented here as it will be transparent and available to all resource types.

· TextResource
A general purpose ASCII text resource file. This provides text-parsing functionality to allow text file formats to be rapidly development. TextResource is derived from Resource.

· SharedMemory
A shared or file mapped virtual memory handler.

· User and system persistent settings

· Multi-threading objects

Common

The Common library contains the following:

· Debug macros O_ASSERT, O_VERIFY, O_TRACE and O_MESSAGE.

· Win32 helper macros for initialising common win32 data structures.

· Standard polymorphic components such as a smart pointer, locus map, fuzzy attributes, etc.

· A base exception class for error handling.

System

The System library provides the following:

· Memory manager
A fast memory manager. This is designed to handle rapid turnover of fixed size data structures such as Origin cells. Dynamic memory allocations are best handled by the default system memory manager.

· Persistence
The cell model persistence library. This enables loading, saving, importing and exporting of cell model data.

· Resource manager
A file resource manager. Creatures 3d will not use this component. The Os library components will be used instead.

Handling game assets or resources

Game resources such as meshes and textures will be handled by the Resource, TextResource and ResourceManager components of the Os library. The table below briefly describes each resource file:

Resource
Binary / Text
File Ext
Used by
Description

Region
T
.rgn
Environment Model
Contains a description of a single region and the portals which connect it to any other.

Visual
T
.vsl
Display Model
Contains a description of a visual. This includes a description of each of its surfaces, the mesh resources that describe them, how they are to be textured, etc.

Mesh
B
.msh
Display Model
Contains vertex and face data for one or more meshes. Multiple meshes are supported to facilitate Mesh interpolation or blending.

Texture
B
.tex
Display Model
Contains one or more texture images. The texture resource must handle pixel depth conversion from 32 bit to 16 bit colour graphics cards.

Physical
B
.phs
Environment Model
Contains physical properties and the name of the mesh resource which describes a physical surface.

Animation
T
.anm
Animation controller
Contains skeleton specification, animation table and state machine data.

Sound
B
.wav
Sound
Contains a single sound sample compressed using Adaptive Differential Pulse Code Modulation.

Origin also uses some files for handling compiled scripts. These are as follows:

File
Binary / Text
File Ext
Used by
Description

World specification
B
.co2
Origin script language
Contains compiled cell types and a specification of the root cell.

Injected cell type specification
B
.io2
Origin script language
Contains compiled cell types for injection into a pre-existing world.

The main application will also generate data files to handle game state. They are as follows:

File
Binary / Text
File Ext
Used by
Description

Exported agent
B
.c3d
Application
Contains serialised cells for an agent.

Serialised game world
B
No ext
Application
Contains the cell assembly of the entire world.

5. Agent systems

This section will sketch out the agent systems that are required for Creatures 3d. Agent engineering in Origin focuses on the reuse of small components (cells) rather then the top-down creation of standalone agents. The construction of cells may be done using either the Origin script languages or C++. In some cases C++ will need to be used in order obtain the performance required.

5.1. Interfacing Origin cells to engine systems

In general engine systems will interface to Origin cells through locus maps. Cells will call out to the systems from their restart behaviour passing the locus map they wish to use to store that system’s state data. E.g. a display model visual will store visual data inside a locus map; each render frame the visual will read this data and modify itself appropriately.

5.2. [image: image3.wmf]Proxy-to

-{Cell ID, Server}

Lookup Table

{Cell ID, Server}-to-Proxy

Lookup Table

Server

–IP address

Agent/ creature systems

Creatures 3d will do away with many of the divisions between creatures and the simple agents which populate the world. Rather than creating individual agents, we should create common building blocks from which to construct many different agents; e.g. sensory systems for vision and smell, moister receptors for plants, spoken language controllers, etc.

Much of what is described makes assumptions about how e.g. brain systems will be implemented. This may change as specialist developers evaluate the creatures’ requirements.

Not listed below is the work necessary to (top down) design a self-consistent and sustainable eco-system. The agents (plants and animals) which populate the Creatures 3d world must be constructed with finely-balanced dependencies.

Agent/ creature building blocks

System
Description

Sensory input system
Scanning sensors to provide agent vision.

Typical sensors might include a constrained field and range of view; simple agent position detection; agent motion detection; agent size detection; environment sensing; etc.

Stimulus input system
Agent to agent interaction is well implemented using messaging or stimuli. Standard message formats must be specified to enable the interaction of any agent with any other.

Sensory input generalisation mechanism
Previous Creatures products pre-classified agents according to the stimuli they produced. Creatures 3d will support learned classification where an agent learns what other agents by generalising over their particular sensory input space.

Attention direction mechanism
A mechanism to select objects to attend to, based upon internal state and the object’s state.

Planning and decision making system
Mechanisms to allow agents to not only respond to their current stimulus and state not with a single action, but with a sequence of actions.

Steering behaviours
Agent obstacle avoidance mechanisms.

Biochemistry
Standard cell types are required to implement chemical reactions, receptors, emitters, etc. Creatures 3d must preserve enthalpy to prevent a rogue gene or user constructing a creature that can metabolise e.g. glycogen from nothing, and so live forever.

Environment receptors and emitters
Agents such as plants require the ability to ‘suck’ or detect environmental properties such as moisture and temperature; and inversely ‘deposit’ quantities of such properties.

Disease
Disease agents can be written which search organisms for specific features and ‘contribute’ or ‘consume’ e.g. chemicals. Such agents could reproduce inside an organism; exist in the environment; or handle collision events and attempt to transfer themselves to the colliding agent!

Physical representation
Cell structures are required to model the physical form of creatures. These genetically expressed structures must instantiate the creature’s physical attributes in the animation controller.

Visual representation
Creatures may require dynamically generate visual assets such as skins, etc. Cell structures are required to drive this process.

Genetics
A standard method of constructing, crossing, mutating and expressing a genome is required. This must process a genome as a sequence of tokens and construct appropriately configured Origin cells.

Speech
Agents need to be able to speak. A simple sound sample based speech synthesiser is required to provide languages for Norns, Grendels and Ettins.

Language
Higher order agents like Norns must support a vocabulary, that is, an association between a written language and a learned concept.

Agent/ creatures

The building blocks listed above must be instantiated to construct a diverse range of plant, animal and hybrid(!) life forms. The exact details of these are not yet known but will include: Norns, Grendels, Ettins, a diverse range of lower animals and plants.

The primary work involved here will be creating a wide variety of action behaviours for the agents. That is, the scripts that describe the output of the agents’ decision making mechanisms.

5.3. Environment systems

The table below outlines the systems which will make up the environment of Creatures 3d.

System
Description

Region/ portal model
A cell model representation of the region/ portal system is required. This provides the foundations of the other environment agent systems.

Environment chronometer
This must provide a global clock for the environment. It must track time of day, day of the season, season of the year, and year. This will be used to regulate other environment systems.

Environment properties
Models are required to simulate the interaction of temperature and water vapour in the atmosphere; and temperature, water, plant nutrients and lava on/in the ground.

Terrain representation
Environmental properties must be tied to the visual and physical description of the environment. This includes visual effects such as water and lava flow, and perhaps physical effects such as difficulty walking through e.g. mud.

Weather model
Sufficient build up of water vapour should lead to cloud development and consequent rain, snow or cloud dispersion; which of course must feedback into environmental properties.

Celestial agents
This includes everything beyond the immediate surroundings of a region. That is, the sky, sun, moon, northern lights, stars, etc.

Ground fire model
A model of fire propagation. This could be implemented as a fire cell which simply ‘infects’ the cells around it.

5.4. Game systems

A number of agent engineered systems which exist ‘outside’ of the game simulation. These are as follows:

System
Description

Camera controller
Must control the position and orientation of the camera from the currently selected creature, user input and the constraints of the physical environment.

Hand controller
Must control the position, orientation and actions of the user’s hand from the selected input device.

Head-up display
A 2d head-up display style GUI is required to supply features such as a creature selector, object inventory, etc.

Music system
A music system is required which will dynamically sequence sound samples in response to game state such as currently selected creature state and environment location.

Ettin blueprints
Blueprints are essentially ettin controller scripts. These must be constructed in such a way as they can be ‘plugged’ into ettins to provide a temporary high level control system.

Connecting agent mechanism
A messaging protocol governing connection and communication; plus mechanisms for physically and logically attaching agents together.

Networking

Creatures 3d requires Visitor Player functionality. This will allow two users located on separate machines to interact within a shared space. The shared space will be a single region within one user’s (the Host user) game environment; located on his/her computer. A stand-alone dedicated server will not be used. The remainder of the Creatures 3d environment will not be networked.

The following sections present a quite lengthy review of the issues involved with networking Creatures 3d. A preliminary design overview is proposed and justified. This should be reviewed and expanded in greater detail prior to development.

5.5. Networking – a discussion

Networking is a big topic. The following sections will present a quick discussion of many of the major issues involved. This will provide a context in which to place the Creatures 3d networking architecture.

Choosing a network model

Networking models are characterised by the location of the definitive simulation state. If the simulation state is held on a single computer (a server) then all other computers become, by definition, clients of that server. If the simulation state is held on multiple computers with non-considered to have any greater status than any other, then the arrangement is peer-to-peer.

[image: image4.wmf]Communication

Language

Client-Server Networking

The diagram below illustrates the arrangement with client server networking. A single local client is included, as this would be the case when implementing Creatures 3d’s visitor player feature.

Clients cannot directly change the state of the environment. They must submit change requests to the server. The server is responsible for ensuring that all clients have a reasonably accurate representation of the game state.

All communication is channelled through the server computer. Consequently it has (n – 1) times the bandwidth requirements of the client computers (where n is the number of clients). This network model is prevalent in Internet based multi-player games where dedicated servers with high bandwidth Internet connections can be employed.

Peer-to-peer networking

The diagram below illustrates the arrangement with peer-to-peer networking.

Each computer must communicate with every other computer in the network; consequently the bandwidth requirements of each computer are equal. The maximum number of users in this arrangement is directly related to the bandwidth of the slowest connected user.

Peer-to-peer networking allows the game state to be distributed. Two alternatives exist for this:

· Maintain complete game state on every peer
Each computer contains a model of the environment; no computer is considered to take precedence over any other. In this situation effort must be taken to ensure that the game states do not fall out of synchronisation. One solution to this is lock stepping (also known as frame coupling), where all machines are constrained to execute at the same rate (the rate of the slowest machine). In general the problems of bandwidth and latency on the Internet are such that this approach cannot provide a real time experience.

· Distributed game state
Rather than storing the complete state of the environment on a single computer, it is split across multiple computers. Whilst no single computer stores the definitive game state, each object is simulated on only one of the participating computers. All other computers store a proxy of the object. Each computer therefore becomes a mini-server and a client to all other computers at the same time.

Distributing the game state allows the CPU cost of the simulation to be distributed across all of the participating computers. It also allows the network load to be distributed across multiple network connections.

A consequence of distributing the game state across multiple computers is that on every single computer, simulated objects will interact with proxy objects. Therefore proxy objects must be created for all remote objects which are of interest to every local simulated object. This basically means maintaining a complete set of objects on every computer. Such an arrangement is considerably more demanding than one which only considers the objects of interest to the user, i.e. those that will be rendered.

The interactions of simulated and proxy objects are potentially dangerous. A simulated object will base decisions upon the state of proxy objects; since the state of proxy objects is subject to network latency, these decisions will be based on out of date data. This could potentially lead to the emergence of a different end result than if the objects had been simulated without the effects of latency. It seems prudent to reduce the number of object/proxy-object interactions to inhibit this phenomenon.

Limitations of the Internet

The limitations of the Internet are well documented[15]. This section will present a brief summary of them.

· Bandwidth
A 28.8 baud modem will transfer 28,800 Kbits per second. Each byte will be transmitted with 2 extra bits for error checking. This gives a data transfer rate of 2,880 bytes per second. Any communication between computers to transmit the environment model state must be sufficiently small to ‘fit’ into this ‘space’.

· Latency
Latency is the time delay between sending a message and receiving a response, that is, the round-trip time of a data packet. Latency or ping times vary from 10ms – 5s or greater. These speeds are in general insufficient to support high quality real-time interaction.

· Lost packets
Packets of data will be dropped during transmission. These must be resent, consuming precious bandwidth and creating further delays in the system. Note that it is quite possible for a packet acknowledging receipt of a message to be lost!

· Out of order packets
When data packets are lost and resent, the end result is packets which arrive out of order! A client must be capable of reassembling the packet order and interpreting the results meaningfully.

Techniques for minimising bandwidth requirements

There are a number of techniques that can be used to minimise the amount of data sent from the server to the client. These are as follows:

· Reduce run-time object creation
Object creation involves sending the entire (proxy) object state to the clients. Where possible objects should be created prior to starting the simulation.

· Filtering
Filtering allows clients to receive updates only from objects that are of interest. E.g. visual data relating to objects which are off screen need not be transmitted to a client. Similarly, a biochemical-monitoring device need only receive data from the creature of interest; all other biochemical data is redundant.

· Delta ‘compression’
When an object changes state it is only necessary to send to the client the data which has changed.

· Message aggregation
Each message sent across the network will incur a constant overhead from its message/packet header. Aggregating multiple messages together allows this overhead to be shared by many messages thus allowing more bandwidth to be used for the simulation data.

· Data truncation
Floating point data typically uses 4 bytes per data value. In some cases this level of accuracy is unnecessary. An IEEE 574 floating point number uses 23 bits for its mantissa component. This could be truncated to 15 bits with acceptable loss of accuracy; a bandwidth saving of 25%.

· Prioritising data
The importance of data varies according to its use. E.g. In Creatures 3d Norn and Grendel data is more important than data relating to lesser agents. Similarly, a Norn’s position or animation data is likely considered more important than its new material or chemical data.

Techniques for minimising the effects of latency

Whilst there is nothing we can do to influence the latency inherent in the Internet, there are of techniques which can minimise or disguise its effects at the client computers. These are as follows:

· Future prediction (Dead Reckoning)
Network latency introduces an interesting effect. At the real-time t, a user will interact with the simulation at time (t – latency); or rather; the user does not interact with the current state of the simulation, but the state of the simulation in the past! Of course if latency times are good this may not be noticeable.

Future prediction involves equipping the client computer with the behaviours of the objects and predicting the object’s state (e.g. position) based on its last known state. E.g. an object moving in a straight line at a constant acceleration can be reliably predicted until its acceleration changes. Only then is a network update required.
This can reduce the number of network updates required and can provide the use with a more up-to-date simulation.

Whilst attractive, future prediction is potentially dangerous. When the prediction is incorrect it can create problematic inconsistencies. Consider the case of an agent walking through a maze.

A predictive path could position the agent beyond an obstacle such as a wall! Of course client-side collision detection would be needed to address this. The end result would still be very different from what occurred on the server.

· Data smoothing
When a client incorrectly predicts the state of an object and that object’s true state is received, the object must be corrected. Rather than changing the state of the object immediately the object may change state over time, effectively smoothing the transition. Whilst the object state is incorrect for longer, the ‘warping’ of objects seen in titles such as Quake is avoided.

· However, smoothing is not appropriate where the predicted and true object states differ greatly. In the example below smoothing the transition between states would cause the object to pass through a obstacle!

Techniques to address packet loss

There are a number of strategies that can help ease the effect of packet loss:

· Re-send packets
Simply re-send any packets which do not arrive at the client.

· Pair-up packets
Prepend the last packet to the current packet. This of course does not address the situation where two packets are dropped in succession, but can, in general, reduce the number of resends necessary.

· Time framed deltas
The client can notify the server of the time stamp of the last packet received. Rather than re-send lost packets, the server sends new packets containing delta or difference information from the last time the client successfully received a packet. This avoids a backlog of resends building up, but requires the server to keep track of what data the client received.

Creatures 3d network architecture

Overview

Creatures 3d will employ a client-server network architecture. Given the requirements of Creatures 3d, this is the networking model that is likely to provide the most robust solution. Justification of this decision can be found in the previous section.

Both the client and server software will be provided by a single Creatures 3d executable. The executable will be configured at run-time to be either a game client or server. This will most likely be done through command line options. Consequently users will execute two processes, one client and one server, as follows:

If the user is playing Creatures 3d standalone, then the user will execute the both the server process and the client process. The server process will execute the Creatures 3d simulation, i.e. the cell model and physics; it will not however support any display or sound systems. These will be provided by the client server, which will communicate with the server to query the objects to render, sounds to play etc.

If the user is the host user, then the situation is similar to the standalone user’s case. However, the host user’s server will communicate not only with the host user’s client process, but also with the visitor user’s client connected via the Internet. Rather than presenting the entire environment to the visitor user only a subset will be available, most likely a single region. All other parts of the host user’s environment will be private.

If the user is the visitor user, the user’s client process will connect to the host user’s server across the Internet. The visitor user’s server process will execute up until the point the user ‘transfers’ to the host user’s server. Exiting the host user’s server will cause the local server to restart.

Strict separation of client and server software has the following benefits. The client-server communication mechanism is in use both when visiting another user and when playing the game standalone. This minimises the differences between either mode of use, ensuring that the user experiences are as similar as possible and minimising the amount of extra software in use when networked, thus aiding debugging. A future benefit is that this architecture will support the cases where there is no local server and the game is entirely networked; and cases where the client is communicating with many networked servers at once.

Client-server communication

Communication between the client and server will include the following:

· System control
Communications that control the connection of the client to the server (and vice-versa).

· Object – proxy object updates
Objects simulated on the server will be represented on each client by proxy objects. As the simulated objects change state, this state change must be transmitted to the proxy objects.

· Object/proxy-object creation and destruction commands

· Inter- object/proxy-object messages
Messages sent to objects and to proxy-objects must be optionally forwarded to their counterparts.

· Text messages
to support chat services.

Objects and proxy objects

Creating and managing proxy objects

In general all autonomous objects will be simulated on the server computer. They will be represented at the client computers using proxy objects; that is, cut-down duplicate objects. Proxy objects will be used as the sole mechanism of communication between objects distributed on different computers connected across a network. Direct communication from an object on one computer to another on another computer will not be possible. This promotes object ‘location independence’ and allows the computers to be loosely coupled and so deal with the high latency of the network connection.

Any objects that must appear on each client computer must be simulated on the server. Consequently a client’s user interface objects will be simulated and exist on the client computer alone. User controlled objects such as the Hand object will be simulated on the server computer. Real-time interaction will be achieved by enabling the proxy hand on the client computer to directly respond to user input.

The server computer is responsible for creating and managing proxy objects. A client manager system must instruct client computers to create proxy objects when necessary and must ensure that they are kept up to date. The mechanism will function as follows:

Each object that must be represented with a proxy at the client computers will register with a network manager. The object will notify the manager of its constituent components that must be maintained in the proxy. It may also define variance tolerances for different types of data. This defines the amount of divergence that will be permissible between the object and its proxy before an update is necessary.

When a proxy object is to be created on the client computer the server’s client manager will send a ‘create object’ instruction to client and pass down the object’s state data. The client computer will construct the object as requested and restart the proxy object. This will have the effect of registering the proxy object with systems external to the cell model such as the display engine.

The server will update each client on an individual basis. Each time the server simulation is updated, the network manager will examine the registered objects and send whatever updates are necessary. It must maintain sufficient information about each client in order to determine the objects that are currently of interest to the clients. This will include data describing the client camera position, depth and field of view.

Additionally, the server may also simulate any client-side proxy-object state prediction in order to maintain its representation of the state of the client computer. This will maintain the state of the proxy objects for longer, reducing the number of updates required. Note however, that this is no small undertaking; it implies that the server will execute independent simulations for each client in addition to the definitive server simulation! Given that the server is resident on the host user’s computer this may prove impractical.

Inter- object/ proxy-object interaction

Much of the description of networking refers to game objects in a (deliberately) abstract manner. The approach described is applicable to pretty much any simulation object model. However, Creatures 3d will use Origin to supply its object model; namely the Cell Model. The Cell Model provides a number of rich inter-object communication mechanisms. They are as follows:

· Asynchronous messaging
Where a message is sent to a cell, buffered for a given length of time, then dispatched to the cell for processing.

· Synchronous messaging
Where a message is sent directly to a cell and processed immediately. This is analogous to a function call in C/C++.

· Direct binding or manipulation
Where a cell attaches itself to another cell and changes the cell’s data directly.

The nature of these mechanisms is such that it is impractical to support some of them across a network connection.

Asynchronous messaging

Asynchronous messaging may be readily implemented across a network connection. In fact it is the most well suited form of communication, as the message sender requires no immediate response.

Messages sent to a proxy object may be handled locally, but may also be propagated to the simulated object. E.g. suppose on a client machine a proxy hand slaps a proxy Norn. The proxy hand must respond to the user input immediately, but the norn should not respond until the server verifies that the slap really happened. E.g it may be the case the simulated norn retreated from the hand before the slap but network latency prevented the user from seeing this. Once the simulated Norn has received the message it can determine its resultant state e.g. by updating its biochemistry and any change sent back to its proxy. Allowing the server to marshal user actions prevents inconsistencies such as multiple hands picking up the same object.

Synchronous messaging

Implementing synchronous messaging across a network is not practical. The client side simulation would need to halt until the server had received, processed and acknowledged the message. The latency of the network is such that would create unacceptable delays.

Direct binding or manipulation

As previously stated, direct binding or manipulation from a cell on one computer to a cell on another will not be supported; local proxy cells must be used.

A client side simulation cell directly reading the contents of a proxy cell presents no additional difficulties. However directly writing to a proxy cell has a number of problems. These are explained below.

Any server-side simulation object may have as many proxy objects as there are client computers. Each of the proxy objects’ states is the state of the simulated object at the last update plus any changes each client has predicted. If a proxy cell were to update the simulation cell directly it would overwrite valid simulated data with predicted data. However, the client could send a proxy-delta, i.e. a modification to the state of the object, which would not invalidate the simulation data.

A mechanism would be required to detect the change to the proxy cell’s data. However the proxy’s data will be changing continuously as prediction takes place. It is therefore necessary to separate out proxy prediction and client-side object simulation to detect the state change.

This implies storing that the client must store duplicates every proxy-object, adding storage and computation cost proportional to the number of proxy objects on the computer. This suggests that supporting direct writing between objects and proxy objects is probably not a good idea.

Can a proxy cell bind or directly manipulate another proxy cell? As above a proxy cell may directly read the contents of another, but cannot write to another cell. Or rather any changes made will not be propagated back to the corresponding server simulation cell. A proxy cell predicting its state based on the cells around it is potentially dangerous. Firstly, the cell’s around are likely to be proxy cells and have predicted state. Secondly since the client only receives updates for the cells of interest to the user, other proxy cells may be very out of date or may not even exist on the client at all! This makes it very likely the proxy cell will make a wildly inaccurate predicted state change.

Implications for agent engineering

Agents (objects) must be designed to be proxies. An agent and its constituent sub-components must be declared as either appearing in the simulated and/or the proxy object.

We must be very careful about what behaviours we allow in proxy cells. In general only behaviours which are internal to the cell, and so based on its own internal state should be proxied. This is something which must be determined on a per agent basis by the agent engineer at design time.

Simulated objects may legitimately read whatever data they wish to from each other. There may be cases when an object on a client wishes to obtain data from a server-simulated object. For example, suppose the user invokes a biochemical-monitoring device from his/her user interface. Such a device will be simulated as an object on the client computer. However the data it displays is stored on the server computer. In this instance the object must create a ‘probe’ object on the server which is proxied back on the client. The probe object will extract whatever data the monitor requires and store it internally. This data will then be transferred to the proxy object. The monitor object may then bind to the proxy object to read the data. Control of the probe object may be achieved by sending messages to the probe client-side proxy object.

Client side simulation

Client side simulation is necessary to disguise the effects of network latency. Without it objects would only change state (e.g. position) each time a network update is received. The initial version of the networking system will not use future prediction. The client will simply display a past-history of server state. Such a system is straightforward and provides predictable results. Should this not deliver the performance required, perhaps because of high bandwidth requirements, a more sophisticated scheme will be considered.

Each proxy object update will correct the state of the client-side simulation. If the object and proxy-object differ significantly an artefact or glitch will likely be noticeable when updating the proxy.

To counter this, proxy objects will maintain two sets of data: the data last received and the actual data being used. Rather than updating the actual data instantaneously, the data will be moved to the correct value over a number of simulation ticks, effectively smoothing the transition and hiding the artefact[12].

A network manager

All client-server communications should pass through a single system component, a network manager. The network manager’s configuration will dictate whether the software is acting as a server or a client. The remainder of the system will be ignorant of this; networking will be transparent to the cell model, environment, display, etc.

All low level packet transmission and receipt will be handled by Babel, the networking library being developed for Creatures 3.5.

The diagrams below sketch out the network manager and its relationship with the remainder of the system for both client and server cases.

6. References

[1]
Product Design Document for Creatures 3D. Piers Jackson. CyberLife Technology Ltd. 1999.

[2]
Creatures 3.5 The Docking Station. Toby Simpson. Creature Labs, CyberLife Technology Ltd, 1999.

[3]
Babel. Mark Stamps. Creature Labs, CyberLife Technology Ltd, 1999.

[4]
Creatures 3d A discussion of required technology. Robin E. Charlton. CyberLife Technology Ltd. 1999.

[5]
Creatures 3d Environment model: Technology review & discussion. Robin E. Charlton. CyberLife Technology Ltd. 1999.

[6]
Origin 2 System Architecture. OGN-98-005. Robin E. Charlton. CyberLife Technology Ltd. 1998.

[7]
Origin 2 Cell Model Requirements & Design. OGN-98-004. Robin E. Charlton. CyberLife Technology Ltd. 1999.

[8]
Origin 2 Cell Model: Implementation. OGN-99-010. Robin E. Charlton. CyberLife Technology Ltd. 1999.

[9]
Origin 2 Behaviour Language. N. Wetten. CyberLife Technology Ltd. 1999.

[10]
Origin 2 User Input System. OGN-99-001. Robin E. Charlton. CyberLife Technology Ltd. 1999.

[11]
Origin 2 Sound System: Requirements & Design. OGN-99-004. Robin E. Charlton. CyberLife Technology Ltd. 1999.

[12]
The Internet Sucks: What I Learned Coding X-Wing vs. TIE Fighter. Peter Lincroft, Ansible Software. Game Developer Conference 1999.

[13]
An Introductory Tutorial for Developing Multi-User Virtual Environments. Rich Gossweiler. http://www.perplexed.com/GPMega/multiplayer/paper.htm
[14]
Introduction: Designing Multiplayer Games. Jered Wierzbicki. http://www.gamedev.net/reference/programming/
[15]
The Internet, A Summary Introduction to TCP/IP, and Losing Underwear. Jared Wierzbicki. http://www.gamedev.net/reference/programming/
[16]
What is Lag? Geoff Howland. http://www.gamedev.net/reference/programming/
[17]
Dead Reckoning: Latency Hiding for Networked Games. Jesse Aronson. Gamasutra Special Report. http://gamasutra.com/features/special/online_report/dead_reckoning.htm
[18]
nVidia RIVA TNT2 High Performance 128-bit TwiN Texel 3D Processor Product description. NVidia Corporation, 1999.

[19]
Ipion Virtual Physics SDK. Ipion Software GmbH, 1999.

[20]
Automated Builds. Francis Irving. CyberLife Technology Ltd. 1999.

[21]
Multibyte Character Set (MBCS) Survival Guide. Chau Vu, Seiichi Satoh, and Matt Grove
Microsoft Visual C++ Business Unit, August 1995.
7. Appendix A: Data dictionary

A project dictionary is available on the Creatures 3d intranet www site. This can be found at http://intranet.

8. Appendix B: Build process

Creatures 3 exploited an automated CD-ROM build process to great effect. This saved a great deal of developer time and resulted in more reliable, higher quality builds than would otherwise be possible. Creatures 3D will do the same.

The build process will be automated by writing a build script which will invoke other programs such as Microsoft Visual Studio and perform the necessary file operations to construct a CD-ROM image.

8.1. Build script

Requirements

The build script has the following requirements:

· Non-interactive autonomous operation
Once initiated the build script should require no further user-input to complete. This allows CD-ROMs to be built e.g. overnight.

· CVS source code database communication
The build script must interrogate the source code database for the latest version of the program code. It should also increment the version number stored in the source code and label the database accordingly.

· Microsoft Visual Studio communication
The build script must invoke Visual Studio to compile the Creatures 3D code to create a new executable.

· Origin compiler communication
The build script must invoke the Origin compiler to compile agent ODL and behaviour scripts.

· Error checking
Each stage of the build process should be checked for errors. Any errors found should halt the process and undo any changes made (to, e.g. the source code database).

· Build version control
The build script must generate new build version numbers for the CD-ROM image.

· Install directory construction
The build script must collect all executables and game resource files from their source locations and construct a game installation directory, i.e. c:\Program Files\Creatures3D.

· Localisation
Where necessary the build script must handle any locale-specific requirements. Note however if we are able to produce a CD-ROM image which supports all locales dynamically at run-time this will be unnecessary.

· CD-ROM image construction
The build script must collect together the install directory and the install program(s) to construct a CD-ROM image. If we use a 3rd party installer such as InstallShield, this will involve actually executing the program to achieve this.

· Delivery
The build script must copy the CD image to a location convenient for the QA group to burn a physical CD-ROM.

· Notification
The build script should notify the development team and QA department of successful completion/ progress reports/ error reports using email or intranet newsgroups.

Implementation

Creatures 3’s build script was written as a UNIX BASH (Born Again SHell) script and executed on a Windows port of BASH to allow execution of Windows programs such as Visual Studio. Whilst there are some reservations about the quality of implementation of the win32 port of BASH, the functionality available provides excellent tool set for the build process [20].

8.2. Install program

Currently InstallShield is our install program of choice. It offers standard Windows installer operation; adequate functionality; is well understood within CyberLife; and is relatively cheap.

However a case does exist for writing our own installation program. Whilst this would be time consuming, in the past much developer time has been spent struggling with InstallShield. A custom install program would allow the game experience to begin the moment the CD is put into the CD-ROM drive, rather than 10 minutes later. A custom install program would be applicable for any CyberLife product, which suggests that it would be better developed within the Technology/Tool group.

9. Appendix C: Automated testing

As Creatures 3D can happily run with no/little user interaction it is possible to automate some testing. This can be implemented by writing stand-alone behaviour scripts which e.g. automatically construct Norns, or monitor the environment for agent population stability, etc. Such tests will likely be carried out overnight.

Automated testing could be incorporated into the build process. Prior to building the CD-ROM image the game could be executed, the test scripts installed, and monitored for a period of time. Of course such testing is likely to provide only very limited coverage of the game.

Appendix D: Localisation

Creatures 3D will ship in the UK, US, France, Germany, Holland, Italy and Spain. The product must be modified for each territory to meet the language and social norms of each nationality.

9.1. Requirements

Software support for localisation has the following requirements:

· Support multiple character sets
To support the locales listed above all that is required is support for Latin letters. Should this list be extended to include parts of Asia, Kanji characters will be required. Support must apply to user entered text such as filenames as well as pre-prepared text strings.

· Game locale setting independent from Windows locale setting
It is not uncommon for users to wish to run an application in one language/ locale on a Windows system of a different language/ locale. It must therefore be possible to select language independently from the operating system.

· Locale-specific game resources
Any game resource such as a sound or texture, etc, may require modification to make it appropriate for a particular locale.

· Locale-specific text string tables
Text strings must be handled in a locale-dependent manner to facilitate easy translation.

· Locale-transparent resource access
The locale of game resources must be transparent to the game system accessing them.

9.2. A summary of software support for different character sets

American English and most European languages are supported by the ANSI (American National Standards Institute) character set. This stores characters as single bytes. ANSI cannot represent the characters of languages such a Japanese, Chinese or Korean Kanji script, etc.

Two other character set representations exist: DBCS (Double-Byte Character Set) (also referred to as MBCS – Multi-Byte Character Set) and UNICODE.

DBCS is used in many parts of Asia. It uses either one or two (or more) bytes to represent a single character. As a consequence it is compatible with ANSI character data types but can be rather messy to work with. DBCS is supported on Windows 95/98 and NT.

UNICODE offers the holy grail of character representations. It uses exactly two bytes per character and can support just about any language on the planet. Unfortunately UNICODE is not support by Windows 95/98. Whilst we could write our own support for it, we would encounter problems when dealing with Windows (win32) system calls involving text strings.

9.3. Design and general approach

Creatures 3 supported many of the requirements listed above. Consequently where possible code will be re-used or re-engineered for to support Creatures 3d. The key software components used to support localisation are outlined below:

Catalogue files (Creatures3)

Catalogue files are used for storing string tables. Multiple files are read to construct a global application-wide string table. This table must be used for all text displayed to the user. Duplicate catalogue files are provided for each foreign language.

Filename localisation (Creatures3)

The filenames of game resources or assets should imply the locale they are intended for. Game engine systems will simply provide the generic resource name, and localisation software will convert this to the correct filename.

e.g. Resource AgentHelp.catalogue may be supplied by AgentHelp-fr.catalogue for French, AgentHelp-de for German, etc.

Standard string type

A single standard string type must be provided and used globally across the system. This will provide some localisation support and guarantee future compatibility with platforms that do support UNICODE.

Code tables

ISO 639 Language codes

Technical contents of ISO 639:1988 (E/F) "Code for the representation of names of languages". Two-letter lower-case symbols are used.

aa Afar

ab Abkhazian

af Afrikaans

am Amharic

ar Arabic

as Assamese

ay Aymara

az Azerbaijani

ba Bashkir

be Byelorussian

bg Bulgarian

bh Bihari

bi Bislama

bn Bengali; Bangla

bo Tibetan

br Breton

ca Catalan

co Corsican

cs Czech

cy Welsh

da Danish

de German

dz Bhutani

el Greek

en English

eo Esperanto

es Spanish

et Estonian

eu Basque

fa Persian

fi Finnish

fj Fiji

fo Faeroese

fr French

fy Frisian

ga Irish

gd Scots Gaelic

gl Galician

gn Guarani

gu Gujarati

ha Hausa

hi Hindi

hr Croatian

hu Hungarian

hy Armenian

ia Interlingua

ie Interlingue

ik Inupiak

in Indonesian

is Icelandic

it Italian

iw Hebrew

ja Japanese

ji Yiddish

jw Javanese

ka Georgian

kk Kazakh

kl Greenlandic

km Cambodian

kn Kannada

ko Korean

ks Kashmiri

ku Kurdish

ky Kirghiz

la Latin

ln Lingala

lo Laothian

lt Lithuanian

lv Latvian, Lettish

mg Malagasy

mi Maori

mk Macedonian

ml Malayalam

mn Mongolian

mo Moldavian

mr Marathi

ms Malay

mt Maltese

my Burmese

na Nauru

ne Nepali

nl Dutch

no Norwegian

oc Occitan

om (Afan) Oromo

or Oriya

pa Punjabi

pl Polish

ps Pashto, Pushto

pt Portuguese

qu Quechua

rm Rhaeto-Romance

rn Kirundi

ro Romanian

ru Russian

rw Kinyarwanda

sa Sanskrit

sd Sindhi

sg Sangro

sh Serbo-Croatian

si Singhalese

sk Slovak

sl Slovenian

sm Samoan

sn Shona

so Somali

sq Albanian

sr Serbian

ss Siswati

st Sesotho

su Sundanese

sv Swedish

sw Swahili

ta Tamil

te Tegulu

tg Tajik

th Thai

ti Tigrinya

tk Turkmen

tl Tagalog

tn Setswana

to Tonga

tr Turkish

ts Tsonga

tt Tatar

tw Twi

uk Ukrainian

ur Urdu

uz Uzbek

vi Vietnamese

vo Volapuk

wo Wolof

xh Xhosa

yo Yoruba

zh Chinese

zu Zulu

ISO 3166 Country codes

Updated by the RIPE Network Co-ordination Centre, in co-ordination with the ISO 3166 Maintenance Agency, Berlin.

Country A 2 A 3 Number

--

AFGHANISTAN AF AFG 004

ALBANIA AL ALB 008

ALGERIA DZ DZA 012

AMERICAN SAMOA AS ASM 016

ANDORRA AD AND 020

ANGOLA AO AGO 024

ANGUILLA AI AIA 660

ANTARCTICA AQ ATA 010

ANTIGUA AND BARBUDA AG ATG 028

ARGENTINA AR ARG 032

ARMENIA AM ARM 051

ARUBA AW ABW 533

AUSTRALIA AU AUS 036

AUSTRIA AT AUT 040

AZERBAIJAN AZ AZE 031

BAHAMAS BS BHS 044

BAHRAIN BH BHR 048

BANGLADESH BD BGD 050

BARBADOS BB BRB 052

BELARUS BY BLR 112

BELGIUM BE BEL 056

BELIZE BZ BLZ 084

BENIN BJ BEN 204

BERMUDA BM BMU 060

BHUTAN BT BTN 064

BOLIVIA BO BOL 068

BOSNIA AND HERZEGOWINA BA BIH 070

BOTSWANA BW BWA 072

BOUVET ISLAND BV BVT 074

BRAZIL BR BRA 076

BRITISH INDIAN OCEAN TERRITORY IO IOT 086

BRUNEI DARUSSALAM BN BRN 096

BULGARIA BG BGR 100

BURKINA FASO BF BFA 854

BURUNDI BI BDI 108

CAMBODIA KH KHM 116

CAMEROON CM CMR 120

CANADA CA CAN 124

CAPE VERDE CV CPV 132

CAYMAN ISLANDS KY CYM 136

CENTRAL AFRICAN REPUBLIC CF CAF 140

CHAD TD TCD 148

CHILE CL CHL 152

CHINA CN CHN 156

CHRISTMAS ISLAND CX CXR 162

COCOS (KEELING) ISLANDS CC CCK 166

COLOMBIA CO COL 170

COMOROS KM COM 174

CONGO CG COG 178

COOK ISLANDS CK COK 184

COSTA RICA CR CRI 188

COTE D'IVOIRE CI CIV 384

CROATIA (local name: Hrvatska) HR HRV 191

CUBA CU CUB 192

CYPRUS CY CYP 196

CZECH REPUBLIC CZ CZE 203

DENMARK DK DNK 208

DJIBOUTI DJ DJI 262

DOMINICA DM DMA 212

DOMINICAN REPUBLIC DO DOM 214

EAST TIMOR TP TMP 626

ECUADOR EC ECU 218

EGYPT EG EGY 818

EL SALVADOR SV SLV 222

EQUATORIAL GUINEA GQ GNQ 226

ERITREA ER ERI 232

ESTONIA EE EST 233

ETHIOPIA ET ETH 231

FALKLAND ISLANDS (MALVINAS) FK FLK 238

FAROE ISLANDS FO FRO 234

FIJI FJ FJI 242

FINLAND FI FIN 246

FRANCE FR FRA 250

FRANCE, METROPOLITAN FX FXX 249

FRENCH GUIANA GF GUF 254

FRENCH POLYNESIA PF PYF 258

FRENCH SOUTHERN TERRITORIES TF ATF 260

GABON GA GAB 266

GAMBIA GM GMB 270

GEORGIA GE GEO 268

GERMANY DE DEU 276

GHANA GH GHA 288

GIBRALTAR GI GIB 292

GREECE GR GRC 300

GREENLAND GL GRL 304

GRENADA GD GRD 308

GUADELOUPE GP GLP 312

GUAM GU GUM 316

GUATEMALA GT GTM 320

GUINEA GN GIN 324

GUINEA-BISSAU GW GNB 624

GUYANA GY GUY 328

HAITI HT HTI 332

HEARD AND MC DONALD ISLANDS HM HMD 334

HONDURAS HN HND 340

HONG KONG HK HKG 344

HUNGARY HU HUN 348

ICELAND IS ISL 352

INDIA IN IND 356

INDONESIA ID IDN 360

IRAN (ISLAMIC REPUBLIC OF) IR IRN 364

IRAQ IQ IRQ 368

IRELAND IE IRL 372

ISRAEL IL ISR 376

ITALY IT ITA 380

JAMAICA JM JAM 388

JAPAN JP JPN 392

JORDAN JO JOR 400

KAZAKHSTAN KZ KAZ 398

KENYA KE KEN 404

KIRIBATI KI KIR 296

KOREA, DEMOCRATIC PEOPLE'S REPUBLIC OF KP PRK 408

KOREA, REPUBLIC OF KR KOR 410

KUWAIT KW KWT 414

KYRGYZSTAN KG KGZ 417

LAO PEOPLE'S DEMOCRATIC REPUBLIC LA LAO 418

LATVIA LV LVA 428

LEBANON LB LBN 422

LESOTHO LS LSO 426

LIBERIA LR LBR 430

LIBYAN ARAB JAMAHIRIYA LY LBY 434

LIECHTENSTEIN LI LIE 438

LITHUANIA LT LTU 440

LUXEMBOURG LU LUX 442

MACAU MO MAC 446

MACEDONIA, THE FORMER YUGOSLAV REPUBLIC OF MK MKD 807

MADAGASCAR MG MDG 450

MALAWI MW MWI 454

MALAYSIA MY MYS 458

MALDIVES MV MDV 462

MALI ML MLI 466

MALTA MT MLT 470

MARSHALL ISLANDS MH MHL 584

MARTINIQUE MQ MTQ 474

MAURITANIA MR MRT 478

MAURITIUS MU MUS 480

MAYOTTE YT MYT 175

MEXICO MX MEX 484

MICRONESIA, FEDERATED STATES OF FM FSM 583

MOLDOVA, REPUBLIC OF MD MDA 498

MONACO MC MCO 492

MONGOLIA MN MNG 496

MONTSERRAT MS MSR 500

MOROCCO MA MAR 504

MOZAMBIQUE MZ MOZ 508

MYANMAR MM MMR 104

NAMIBIA NA NAM 516

NAURU NR NRU 520

NEPAL NP NPL 524

NETHERLANDS NL NLD 528

NETHERLANDS ANTILLES AN ANT 530

NEW CALEDONIA NC NCL 540

NEW ZEALAND NZ NZL 554

NICARAGUA NI NIC 558

NIGER NE NER 562

NIGERIA NG NGA 566

NIUE NU NIU 570

NORFOLK ISLAND NF NFK 574

NORTHERN MARIANA ISLANDS MP MNP 580

NORWAY NO NOR 578

OMAN OM OMN 512

PAKISTAN PK PAK 586

PALAU PW PLW 585

PANAMA PA PAN 591

PAPUA NEW GUINEA PG PNG 598

PARAGUAY PY PRY 600

PERU PE PER 604

PHILIPPINES PH PHL 608

PITCAIRN PN PCN 612

POLAND PL POL 616

PORTUGAL PT PRT 620

PUERTO RICO PR PRI 630

QATAR QA QAT 634

REUNION RE REU 638

ROMANIA RO ROM 642

RUSSIAN FEDERATION RU RUS 643

RWANDA RW RWA 646

SAINT KITTS AND NEVIS KN KNA 659

SAINT LUCIA LC LCA 662

SAINT VINCENT AND THE GRENADINES VC VCT 670

SAMOA WS WSM 882

SAN MARINO SM SMR 674

SAO TOME AND PRINCIPE ST STP 678

SAUDI ARABIA SA SAU 682

SENEGAL SN SEN 686

SEYCHELLES SC SYC 690

SIERRA LEONE SL SLE 694

SINGAPORE SG SGP 702

SLOVAKIA (Slovak Republic) SK SVK 703

SLOVENIA SI SVN 705

SOLOMON ISLANDS SB SLB 090

SOMALIA SO SOM 706

SOUTH AFRICA ZA ZAF 710

SOUTH GEORGIA AND THE SOUTH SANDWICH ISLANDS GS SGS 239

SPAIN ES ESP 724

SRI LANKA LK LKA 144

ST. HELENA SH SHN 654

ST. PIERRE AND MIQUELON PM SPM 666

SUDAN SD SDN 736

SURINAME SR SUR 740

SVALBARD AND JAN MAYEN ISLANDS SJ SJM 744

SWAZILAND SZ SWZ 748

SWEDEN SE SWE 752

SWITZERLAND CH CHE 756

SYRIAN ARAB REPUBLIC SY SYR 760

TAIWAN, PROVINCE OF CHINA TW TWN 158

TAJIKISTAN TJ TJK 762

TANZANIA, UNITED REPUBLIC OF TZ TZA 834

THAILAND TH THA 764

TOGO TG TGO 768

TOKELAU TK TKL 772

TONGA TO TON 776

TRINIDAD AND TOBAGO TT TTO 780

TUNISIA TN TUN 788

TURKEY TR TUR 792

TURKMENISTAN TM TKM 795

TURKS AND CAICOS ISLANDS TC TCA 796

TUVALU TV TUV 798

UGANDA UG UGA 800

UKRAINE UA UKR 804

UNITED ARAB EMIRATES AE ARE 784

UNITED KINGDOM GB GBR 826

UNITED STATES US USA 840

UNITED STATES MINOR OUTLYING ISLANDS UM UMI 581

URUGUAY UY URY 858

UZBEKISTAN UZ UZB 860

VANUATU VU VUT 548

VATICAN CITY STATE (HOLY SEE) VA VAT 336

VENEZUELA VE VEN 862

VIET NAM VN VNM 704

VIRGIN ISLANDS (BRITISH) VG VGB 092

VIRGIN ISLANDS (U.S.) VI VIR 850

WALLIS AND FUTUNA ISLANDS WF WLF 876

WESTERN SAHARA EH ESH 732

YEMEN YE YEM 887

YUGOSLAVIA YU YUG 891

ZAIRE ZR ZAR 180

ZAMBIA ZM ZMB 894

ZIMBABWE ZW ZWE 716

Appendix E: Art plan

Internet

VISITOR USER COMPUTER

HOST USER COMPUTER

Server process

Server process

Client process

Client process

SERVER

CLIENT

LOCAL

CLIENT

REMOTE

SERVER

CLIENT

LOCAL

CLIENT

REMOTE

CLIENT

REMOTE

CLIENT

REMOTE

Client-server networking: one local client and one remote client.

PEER

Client-server networking: one local client and 3 remote clients.

PEER

MessageBroker

PEER

SendMessage

SendMessage

PEER

Environment

PEER

Network Manager

�

PostMessage

CellModel

PEER

PostMessage�SendMessage�BroadcastMessage

Peer to

peer networking: with 2 users.

Peer to peer networking: with 4 users.

Cell

Babel Network Communications

Create�Destroy�Update state

Packet contents

Entity relationship

BroadcastMessage

CreateCell�PostMessage�SendMessage�BroadcastMessage

BroadcastMessage

Entity relationship

Packet contents

Create�Destroy�Update state

Network Manager

� EMBED Word.Picture.8 ����

Babel Network Communications

Cell

MessageBroker

SendMessage

SendMessage

PostMessage

CellModel

Geometry

Sound

Renderer

Display

Physics

Environment

Application

System

Install cell type

Script Language

Install cell type

Script Language

Environment

Direct3D Immediate Mode

Platform dependent sound system

OS

Origin Cell Model

Origin Script Language

Babel Network Communications

Behaviour Library

Model

Maths

Network Manager

Common

Support libraries

Internet

User-Input

Client software

Server software

Skeleton model

Animation Controller

State machine

Animation table

Animation locus map

Physics locus map

Visual locus map

Visual

DISPLAY MODEL

Entity

ENVIRONMENT MODEL

Skeleton

ANIMATION CONTROLLER

CELL

Cell assembly

MessageBroker

Scheduler

TREE

Predicted path path

True path

Smoothing path

True path

Predicted path

Update arrives

Update arrives

Update processed immediately

Update arrives

CLIENT

SERVER

Total delay

Interpolate update

3

1

t = 0

Total delay

2

1

t = 0

CLIENT

SERVER

1

t = 0

3

2

1

t = 0

Future prediction

Update arrives

CyberLife Technology Ltd. Quayside, Bridge Street, Cambridge, CB5 8AB, UK.
Phone: +44 (0) 1223 727000, Fax: +44 (0) 1223 727001

Page 8 of 1

Confidential

i

_1001492870.doc

Proxy-to

-{Cell ID, Server}

Lookup Table

{Cell ID, Server}-to-Proxy

Lookup Table

Server�–IP address

