
Z e n o f S t r e a m i n g : B u i l d i n g a n d L o a d i n g G h o s t o f T s u s h i m a

• Adrian Bentley

• Coding Team Lead at Sucker Punch

Productions

• ~17 years = ~8 titles

WHO AM I?

Napkin Math

Building Tsushima

Rendering Tsushima

Fine Grain Streaming

Loading Time

OUTLINE

Simulating Wind in Ghost – Bill Rockenbeck - GDC 2021

Samurai Landscapes – Matthew Pohlmann - GDC 2021

Procedural Grass in Ghost – Eric Wohllaib - GDC 2021 Advances

Lighting & Rendering in Ghost – Jasmin Patry – SIGGRAPH 2021

OTHER TALKS

Video of Ghost

Defining the Budgets

NAPKIN MATH

ONCE UPON A TIME…

TITLE COMPARISON

Second Son Screenshot – Dense City

environment

ENGINE POSTMORTEM
By Adrian Bentley

Lead Engine Programmer

TITLE COMPARISON

Second Son Map

~250 100m Tiles

SECOND SON DISC SIZE

File Type Size (uncompressed)

Texture 8.7G

Game+Mesh 7.4G

Cutscene 4.9G

Movies 3.4G

Music 1.4G

Dialogue 0.4G (x10)

Core 0.3G

Total 31G (24.5G compressed)

Budget Size (uncompressed)

Textures Per Tile * 48M

Tile 22M

World TOD all tiles (~250) 616M

Total per tile ~72M

Tsushima map

NAPKIN MATH

Tsushima ~708 km2

Guess ~64 km2

NAPKIN MATH

So 6400 100m tiles x 72M

= 460G!

Or 4M/tile

Trees in a forest = ~2500

Plus bushes, flowers, etc. 10k+ instances.

All LODs for tree = 0.6k – 1.2k = 12M total

Grass or similar stuff – 100k+/1m+

NAPKIN MATH

MORE ESTIMATES

Content Tile Optimized

Terrain 3M 2.5M

Terrain Physics 24M 0M

Vegetation 12M 1M

Lighting 0.5M 0.11M

Pathing 6M 3M

Merged BSPs for physics

Per lod per shader bounds for rendering

Occlusion by large buildings

Reusable city streets, side walks, buildings

Manually placed assets

Manually authored pathing

Aggregated packs?

OLD APPROACHES

Large scale/robust editing

Procedural tools

Better mission tools

Optimize instance overhead

More data into shared core

Needed fine grain streaming?

MATCHING TECH TO VISION

Where did we end up?

PERFORCE

Maya 40k - 66k files 224G - 371G

Texture Bundles 54k - 60k files 230G - 610G

Wav/Loc 280k - 1m files 101G - 320G

Text 65k 80G

Movie 330 12G

Total 0.5m - 1.6m files 700G - 1.5T

DISC

File Type Size (uncompressed)

Texture 17.9G

Game+Mesh 2.8G

Terrain 5.2G (1214 tiles)

Streamed Mesh 0.9G

Movies 6.8G

Cutscene 2.5G

Music 2.1G

Dialogue 2G (x9 eu)

Total 56.2G (34.8G compressed)

MEMORY

GPU Heap 1392

Textures 1120

Pack CPU 1040

Pack GPU 582

CPU Heap 376

Shared Heap 330

Meshes 116

Engine 116

Sound Heap 64

Memory

Similar structure to Second Son
30hz 6.5 cores (+0.5)
1 main thread + 5 job threads (+5 new low priority)
Phases – Update (AI), Solve(anim+physics), Render

More threading

More GPU async compute

PERFORMANCE

CPU Frame

GPU Frame

File IO

Shipping a game in hard mode!

AWS – VPN, bandwidth, caching

Minimize sync/build

Simple/fast(ish) build not reliant on distribution

WORK FROM HOME

Art at Scale

BUILDING TSUSHIMA

Build it in Maya

• Deformers + painting for height

• Chained randomized placement for asset

Worked, but…

• Many performance and reliability issues.

In-engine painting

GPU baked procedural growth/texturing

GPU compute occlusion/rendering

Virtual texturing

TERRAIN EDITING IN ENGINE

Samurai Landscapes
Building and Rendering Tsushima Island on PS4
MattP GDC 2021

Where am I?

Tiles 200m ~6M budget (~1300)

~2.5M of 513x513 maps (~0.4m/texel)
Height 2b (u16)
Ambient Occlusion 0.5b (bc4)
Biome 1b (u8)
Texture blends 5b (rgba8 + u8)
Grass 1.5b (u8 + bc4)
Wetness 1b (2x bc4)
Water flow/depth 2-3b (u8 x 2-3)

ORGANIC TERRAIN

Copy terrain to CPU memory for physics etc.
Height 4b - physics
Grass 1b - AI
Material etc. from virtual texture – sound, vfx

TERRAIN ON CPU

Careful of precision at 8km
Lots of little problems
pos * Inv (mat) -> (pos – posMat) * Inverse(m)

PRECISION

Only rebuilds if inputs change

Flatten components into big arrays or BVH

Low memory footprint instancing

Far LODs stay up to date

MERGING AT COMPILE TIME

INDEX RANGES

int CompareHierarchy(Tree * tree0, Tree * tree1)
{

CDynAry<Tree *> treeChain0, treeChain1;

// Build parent chain for tree0 & tree1 ...

int minCount = min(treeChain0.count(), treeChain1.count());

for (int i = 0; i < minCount; ++i) {
int n = CompareConstructionOrder(treeChain0.Tail(i), treeChain1.Tail(i));
if (n) return d;

}

return arypPrim0.C() - arypPrim1.C(); // Favor shortest parent chain
}

// Any elements sorted this way can use index ranges to refer to a group

FILTERED MERGING

void Merge(Tree * parent, const char * path, Filter filter) {
if (IsCached(path)) {

DuplicateTree(path, parent); // Reuse read & filtered tree
return;

}

Tree * tree = TreeReadFile(path); // Read file

// Recurse on nested file references
for (auto * childTree = ChildrenToRecurse(parent)) {

Merge(childTree, PathToMerge(child), filter);
}

FilterTree(tree, filter); // Reduce tree complexity
CacheFile(path, tree); // Memoize the file contents

}

Header + Table of Contents (cached)
Virtual memory mapped pages
A few reads plus pointer patching

PACKS

City 44M

Village 24M

Landmark 4M

Many loaded at a time – each 0.25-8M

Task Graph with Components
Deterministic testing
More designer agency vs complex script

In-game editing/debugging
Hints to procedural systems
Remotable Dev UI
Previs NPC animations
History debugging

STREAMING MISSIONS

Changes can conflict!
Snap assets to terrain during compile
Cross game references compile time checks
Sanity checking linear sequences

MISSIONS VS SCALE

“The fastest code is code that doesn’t run”

Doesn’t exist > Asleep > Optimized > Naive

Doesn’t exist - Spatial Streaming

Asleep – Static Distance Heap

Optimized – Visibility, Texture streaming

SPARSE UPDATE

STATIC DISTANCE HEAP

void CDistanceHeap::Update(Point posView) {
float travelView = Dist(posView, m_posView);
m_posView = posView;

m_travelDistance += travelView;

// When travel distance * 1.0001f when it goes over a limit ...

// Remeasure and categorize any items that may be close enough
for (;;) {

if (m_heap[0].m_score >= m_travelDistance)
break;

float distance = DistanceToItem(m_heap[0].m_item, posView);

TryUpdateActiveness(m_heap[0].m_item, distance <= 0);

m_heap[0].m_score = m_travelDistance + Abs(distance);
ReheapifyElement(0);

}
}

Problem cases
Tons of moving objects
Camera cuts/teleports

Used in particle emitters, volumes…
animated objects, sound emitters, interactive objects…

STATIC DISTANCE HEAP

TO BAKE OR NOT TO BAKE

Compile time > Runtime
Unless dependencies are hard!
Or it’s huge… e.g. per TOD per tile baked data.

Expensive but smallish data good
Procedural blends, placement, etc.
Portals for pathing and AI cover spots
Baked nightly

TO BAKE OR NOT TO BAKE

WHAT ABOUT BIG STUFF?

Content Tile Optimized

Terrain 3M 2.5M

Terrain Physics 24M 0M

Vegetation 12M 1M

Lighting 0.5M 0.11M

Pathing 6M 3M

ISS – 100% authored navigation mesh
Too much work, Offline bakes are hard

Ghost – Live 20cm subgrids (4 512x512 per tile)
Subgrids wake if all overlapping terrain/regions available
Cast thousands of vertical rays against terrain & physics
Buildings generate grids from custom meshes
Slope rejection, disjoint set for connectivity
Hierarchical A*
Amortized over time.

PATHMESH AT RUNTIME

Networking in a streaming world is hard

An Overview

RENDERING TSUSHIMA

Everything is a mesh

Deferred (fat) mostly one pass
Forward+ for skin etc.

Dynamic view BSP for CPU occlusion

Static TOD w/ indirect tetrahedral mesh
Sampled on vertices or per mesh

SECOND SON RENDERING

Deferred with Z-equals for cutout
Saved 3+ ms (see Doom 2016)
Tile categorization lighting/decals

Height map terrain rendering

GPU occlusion

Real time TOD

GHOST RENDERING

Height map + normals +more
513x513 grid for simpler sampling

Rendered with 9-index buffers
64x64 quad grid
Quad-tree with neighbor fixup
See “Terrain Rendering in Frostbite"

Blends & Virtual Texture
Expensive blending + many decals
See MattP talk for more details

TERRAIN RENDERING

Compute + indirect draw
Single 24b-32b per instance (all LODs/shaders)
10k instances ~0.3M (vs 12M)
~10M for all far LOD in world

GPU COMPUTE RENDERING

struct SProxySetInstance
{

FLOAT3 m_pos; // Object-space position of instance
UINT1 m_eulPack; // Packed Euler Rotation (10-11-11)
UINT1 m_vecScalePack; // Packed Scale (10-10-10)
UINT1 m_bRand : 8; // Random byte
UINT1 m_iTileid : 7; // Index of tileid of this instance (or 128 if none)
UINT1 m_nProbeMask : 2; // Probe mask override for instance
UINT1 m_iGroup : 15; // Which group we're in

};

Occlusion with last frame’s depth (CPU & GPU)
Per-triangle culling terrain culling

Far LODs drop with stochastic max distance

More details in Samurai Landscape talk…

GPU COMPUTE

Shader Swaps

Grass maps per tile for type/height
Runtime placed blades and instanced meshes
Leverages GPU compute rendering

Stochastic grass shadowing

Fallback LOD texture blend on terrain

Wind and character interaction

RUNTIME GRASS

Procedural Grass in Ghost of Tsushima
Eric Wohllaib Advances GDC 2021

No super-powers… but lots of leaves

Wind as a core gameplay feature

Particles
Terrain, water access and collision.
Animated meshes, reality bubble, and more

Tons of GPU Cloth
Every character, flag, doorway
Collisions, constraints, layering, etc.

PARTICLES IN GHOST

Blowing from the West:
Simulation and Particles in Ghost of Tsushima
Bill Rockenbeck GDC 2021

GPU relighting
Nearest 16 cubemaps self-shadowed
Terrain probes 16x16x3 per tile
Streamed tetmesh data for buildings

Disc ~44m whole world + 2M per city or so

Runtime BC6 compression
https://github.com/knarkowicz/GPURealTimeBC6H

RELIGHTING

Thin walls - interior visibility mask

Real-time Clouds

Volumetric fog

Scattering aligned color space

Lots of async compute

MORE LIGHTING DETAILS

Lighting & Rendering Ghost of Tsushima
JasminP SIGGRAPH 2021

Screen-space Shadows
Drop small shadowed items for perf
Cards for tree shadows

Profile Guided Optimization

Lots of Scalarized loops
Drop texture atlas for particles
Terrain texture sampling
Shared blend values

OPTIMIZATION

PERF TEAMWORK

2018 – tests way over

2020 – nearing budget

Ship – solid

Solid team effort

A Tale of Development

TEXTURE STREAMING

“It’ll be ok to put everything in Core.”

“This is just a forward-looking experiment.”

Narrator – “It wasn’t…”

E3 2018 blocked by memory issues

Mildly panicked switch

TEXTURE STREAMING

Defragmentation

Textures are metadata plus binary payload
Single read for any mip range

Single manifest loaded at boot time
All metadata and mips smaller than 64

SIMPLE MODEL

Async defragment 25M per frame

DEFRAGMENTED HEAP

Single maniftest loaded at boot time
All metadata and mips smaller than 64

MANIFEST

struct STexMeshManifest
{

struct STextureLowMips
{

CString m_file; // File name
SMd5 m_md5Sources; // Md5 sources for this texture (for diffing)
STextureData m_texd; // Dimension, format, etc.
u64 m_offsetMips; // Index of data for first mip
u64 m_offsetLowMips; // Index of data for non-streamed mips

};

CDynAry<STextureLowMips> m_textures;// Textures
CDynAry<u8> m_lowmipBytes; // Bytes for all low mips

CDynAry<SMeshGroupInfo> m_meshes; // Meshes
};

Most objects don’t move
Non-dependent store doesn’t block

Push all data to array when it changes
Prep for threading now nearly memcpy
Branch for rare compact SIMD data

Profile and be careful of overhead!
Copy several MB from many threads a bad idea
Atomic increment initially dwarfed copy cost

DATA ORIENTED

Copy

0.5ms

Measure

8.7ms

Score

6.5ms

SIMD DISTANCE

inline int4 NCeilLog(float4 vec) {
int4 vecIeee = int4(vec); // bit-wise cast to int
vecIeee += int4(int(((1 << CBIT_FltFrac) - 1) - (EXP_FltBias << CBIT_FltFrac)));
return vecIeee >> CBIT_FltFrac;

}
void ProcessShaderGroup(...) {

float4 dist = SqrtFast(DistSqr(localBounds, localViewPosition)); // SqrtFast = x * _mm_rsqrt_ps(x);
float4 distTex = max(shdgroup.m_distMin, float4(penaltyRatio) * max(dist - float4(biasView), float4(minView)));
float4 perspectiveRatio = float4(ratioFov) * _mm_rcp_ps(distTex);

// Also measure distance to prefetch positions if prefetching...

// Calculate pixels covered by shader's uv density
// (uv_dist / cam_dist) * (half_screen_res / tan(fov/2))

float4 textureAreaRatio = perspectiveRatio * perspectiveRatio;
float4 screenCoverage = shdgroup.m_meshAreas * textureAreaRatio;

// Approximate pixel count and conservative log for mip (^8 for fixed point fraction)

float4 pixelFixedPoint = float4(halfScreenRes) * shdgroup.m_uvSize * perspectiveRatio;
pixelFixedPoint *= pixelFixedPoint;
pixelFixedPoint *= pixelFixedPoint;
pixelFixedPoint *= pixelFixedPoint;

int4 logPixel = min(int4(logClamp), NCeilLog(pixelFixedPoint));
for (int i = 0; i < 4; ++i) {

SShaderStat * stat = &aryShdstat[shdgroup.m_shdids[i]];
stat->m_score += screenCoverage[i];
stat->m_logPixels = max(stat->m_logPixels, s16(pixelFixedPoint[i]));

}
}

Particle atlas – drop it, scalarize and use

bindless

Virtual texture caching update
Always update 1/36th of 1 slice per frame

HARDER CASES

UVs are complex (degenerate, weird, etc.)

Tried various UV Density heuristics
Average of 90% of triangle area
Maximum of 90% of triangle area
Min max dimensions with aniso (90% of tri area)
Max of log bucketed area (80% area and clamp)

Approximate for procedural UVs

Shader UV scale is a pain

UV HEURISTICS

1G texture budget, squish when over

SIMPLE OVERBUDGET APPROACH

void UpdateOverbudget() {
bool overbudget = m_sizeWanted > sizeTotal - sizeReserved;
if (overbudget) {

// increase min distance and reduce bias, then scale distance
m_penalty = min(64, m_penalty + 1); // clamp at high multiplier
m_cooldown = 1;

}
else if (m_nPenalty > 0) {

// If no reads requested or not recently overbudget lower penalty
if (!any_reads_desired)

m_cooldown = 0;
if (m_cooldown == 0)

m_penalty -= 1;
}

}

Necessary and Hard
Character existence
Nearest next cutscene
Every camera cut (e.g. within/across cutscenes)

Characters locked by default at 1k
Cutscenes and photo mode can unlock them

PREFETCHING

Growth: Grid then bottom-up merge
Group bounds at 64 grid (or 5m cells)
Merge until goal reached (e.g. goal sqrt(count – 4) + 4)

Terrain & grass – bounds around ¼ of tile
Min camera distance clamp

REDUCING BOUNDS

Similar
Also squishy!
Manifest stores headers, single read for any LOD range
Parallel measure code

Complex to suppress LOD drawing

Virtual memory with 64K pages

MESH STREAMING

MESH DATA

inline float DistanceFromNlod(NLOD nlod) {
float fraction = (nlod / float(NLOD_Max));
float distance = fraction * fraction * NLOD_MAX_DISTANCE; // Up to 12.8km
return (nlod < NLOD_Max) ? distance : FLT_MAX;

}

struct SMeshGroupInfo {
struct SMeshInfo {

U64 m_hashStream; // Unique 'name' of mesh within the streaming group
U32 m_offsetIndices; // Offset of the indices
NLOD m_nlodMic; // LOD range this mesh supports
NLOD m_nlodMac; // ...
CFixAry<int, 16> m_offsets; // Offsets within the memory layout

};

struct SLodInfo {
NLOD m_nlodMac; // LOD distance we support (any distance greater)
int m_offset; // How much we need to have read for LOD

};

CString m_filename; // File we'll read mesh data from
SMd5 m_md5Sources; // Md5 sources for this texture (for diffing)
u32 m_offsetData; // Offset of mesh data
U32 m_sizeData; // Size of data

CDynAry<SMeshInfo> m_meshinfos;
CFixAry<SLodInfo, 8> m_lodinfos;

};

Loading.. .

CONCLUSION

Cold Boot ~44s

Fast Travel ~8s

Death < 5s
Delayed load to show user tips screen

LOADING SPEED

VISION AND CONSTRAINTS

Don’t load so many textures!
Reduce textures by 2.2x when warping (~1/4th the
memory)
Unless into a cutscene...

THIS ONE TRICK

Minimize reads per file
Aggregate small assets

Minimize size
Merge at compile time
Optimize, then optimize some more

Lean on GPU compute

Pull a few tricks

SUMMARY

More virtual memory & GPU compute

More fine streaming (anims, sounds)
Need to make problems squishy

Improved tools, build time, etc.

Solve complex UVs

FUTURE

THANKS

Want to work on problems like these?
We’re looking for programmers!

Tools, Graphics, Gameplay, Camera, Audio, Engine
Junior or Seniors welcome!

https://jobs.suckerpunch.com/

WE ARE HIRING!

https://jobs.suckerpunch.com/

For your enjoyment

EXTRAS

Similar to Tribes model
• UDP with sequence numbers
• Messages (unreliable) and reliable messages

(unordered)
• Snapshots of a thing with dirty bits (unordered

reliable)

Streaming lifetime vs ownership
• Host arbitrated whole pack ownership
• Generation numbers so people know what to accept
• Authority trading either enforced or vote-based

NETWORKING FOR LEGENDS MODE

Users crashing in Jan/2021 with no recent patch

Best guess:

1. Some machine created a bogus empty snapshot.

2. Transmitted it to everyone.

3. Snapshot persisted across a warp (shouldn’t happen).

4. Crash wouldn’t happen until later on.

5. This allows it to continue to spread!

Ghost in the machine!

NETWORK VIRUS

1. Force repro by corrupting a snapshot.

2. Don’t keep across warps.

3. Force crash if send/receive bad snapshots.

Exciting times. ☺

NETWORK VIRUS INOCULATION

