

�

Unreal

Technical Design Document

Revision 0.62

April 4, 1996

Tim Sweeney

Epic MegaGames, Inc.

�
Purpose

This document describes the architecture and technical design of Unreal, a first-person 3D action game under development by Epic MegaGames. Together with the Game Design Document, this forms the working design for Unreal which we are using as a guide for developing the game.

As is typical with Epic MegaGames projects, our technical design and game design will go through many changes during development as we find new ways to take advantage of existing technology and we discover which game play elements work best in an actual game environment.

Development Schedule

We are developing Unreal in four separate phases:

Version�
Estimated beta date�
Estimated ship date�
�
MMX Version�
July 1, 1996�
August 1, 1996�
�
Shareware and retail version�
December 1, 1996�
January 1, 1997�
�
UnrealEd & UnrealServer�
December 1, 1997�
February 1, 1997�
�
Follow-on products�
To be determined�
To be determined�
�

MMX Version: This will be a full working version of Unreal, approximately 25% larger than the shareware version and 1/4th the size of the retail version. This will contain all MMX enhancements and will only run on MMX-equipped Pentium and PentiumPro processors.

Shareware and retail versions: These will support both MMX and non-MMX Pentiums and will mark Unreal’s public debut on the Web and in retail stores. These will contain the Unreal client, and a possibly-limited Unreal server which may only be capable of serving one level at a time. The shareware version will be distributed freely on the Web.

UnrealEd: This is our Unreal editing tool, which enables level designers to build entire game levels from constructive solid geometry primitives. UnrealEd also contains tools for decorating levels with textures and light sources, placing enemies, writing scripts to control enemies, and all other fundamental features needed to create and extend Unreal levels. We will be releasing this in retail and in shareware in order to create a third-party following of level designers and tool creators.

UnrealServer: This is the multi-level Unreal server, which enables gamers with fast Internet connections to set up game servers and create environments which players can explore.

Follow-on products: These include sequels which we will consider creating when the time comes. Possibilities include Unreal II, add-on level packs, and content packs for level designers containing extras such as textures and brushes.

Game Requirements

A Pentium-60 or faster CPU required, Pentium-120 recommended

8 megabytes of memory required, 16 megabytes or more highly recommended

A 16-bit sound card is highly recommended. The sound card, if present, must either include a driver for, or be supported by, Microsoft’s DirectAudio interface.

For the MMX version, and Intel Pentium processor with MMX extensions.

A two-megabyte video card with a DirectDraw-compatible driver is highly recommended, though Unreal will work on any standard Windows 95-compatible video card without DirectDraw.

Microsoft Windows 95 or Windows NT operating system.

�
Architectural Overview

������������������������������

Design Goal:

The primary design goal of the Unreal engine was to create a highly customizable, expandable engine and tool set that enables designers to create and easily expand the game’s content. The reasons for this are two-fold: first, it speeds up development of the core game and, second, it will enable Unreal enthusiasts to create their own Unreal levels and their own gaming environments on the Internet. Without a flexible engine and a comprehensive tool set, we would not be able to able to create an expandable, content-rich environment like the Worldwide Web.

The Content Level:

Game Content: Includes all artwork, texture maps, 3D models, music, sound effects, and other audiovisuals that appear in the game.

Game Scripts: Code written in Unreal’s built-in scripting language that describes how things behave in Unreal, including the behavior of creatures, weapons, animating objects, and moving geometry.

Game/AI support DLL: This contains all of the logic specific to the Unreal gaming environment; by compartmentalizing this, we enable the Unreal engine to be used in other first-person 3D games with different design requirements.

The Engine Level:

Unreal Engine: Responsible for coordinating all Unreal subsystems, the Unreal engine maintains all geometry and object databases for the world, and handles the basic physics, messaging, scripting, internal 3D computations, and level editing functions for the game.

Unreal Network Server: Enables players (formally, clients) to log in and out of a network server, sends uncached files to clients on an as-needed basis, and maintains coherence between the server’s object list and the object lists of all players. This component functions somewhat like a Web server.

3D Rendering: Contains all code needed to render Unreal’s realistic 3D environments. Unreal’s graphics pipeline is broken up into nine stages, a non-conventional architecture: Traversal, occlusion rejection, rasterization, occlusion computation, object sorting, lattice formation, lattice texture and lighting setup, span rendering, and post-processing. The final three stages come in two varieties, an MMX (24-bit color enhanced) version, and a 256-color Pentium version.

Audio Subsystem: Our Galaxy audio system, also used in War Machine, Jazz Jackrabbit II, Firefight, digitally mixes music and sound effects, applying appropriate 3D panning and Doppler shifting effects where appropriate. The music portion is based on the Scream Tracker and MOD music format which, unlike MIDI, allow custom instrument samples to be mixed with a high degree of control over musical effects, and played on any sound cards that support wave output.

Network Subsystem: This is a layer of abstraction which provides transparent, unreliable, packet-based access to Internet TCP/IP, modem, standard network, and serial support.

The Operating System level:

We rely on many facilities available in Windows 95, and in Microsoft’s supplementary Windows 95 SDK’s, for much of the low-level functionality of Unreal. Specifically, we use the following major components:

DirectDraw: Provides fast access to video memory in a variety of modes. This enables Unreal to avoid the time-consuming bottleneck of the Windows GDI.

DirectAudio: Enables our sound system to output a continuous stereo stream of sound, mixing music and sound effects as needed.

Sweeper SDK: Includes advanced support for many features of Unreal’s network play, including URL support (so that Unreal may be linked to Web pages and vice-versa), and object cache support.

WinSock: Microsoft’s standard interface for TCP/IP communications.

DirectPlay: Microsoft’s standard modem/network game interface, which includes (or will include) support for all major multiplayer gaming networks such as Catapult and Total Entertainment Network.

Network play overview

Unlike most contemporary games, Unreal supports true client-server network play. Unreal servers operate much like Web servers, in that they are persistently available and players can hook up and check them out, coming and going as they please.

The following issues are relevant in understanding Unreal’s network play architecture:

UnrealServer is a multi-threading application which can manage one or more Unreal levels at the same time, recognizing and admitting players who can come and go as they please. UnrealServer moderates nearly all gameplay, receiving input from each clients, and sending rendering information back to each client in real-time.

Unreal levels work like Web pages, in that a level is completely self-contained but can contain links to other levels (via doors and teleporters in our 3D environment, versus hypertext in a Web browser). Thus it will be possible for gamers to create complex, interconnected networks of UnrealServers spanning multiple servers, multiple locations, and even multiple countries.

When a player connects to an UnrealServer, the player will automatically download all data required for the level, including any textures, level maps, sounds, and other data that isn’t present on his machine. As with Web browsers, Unreal will maintain a cache of recently-used data so that players will only have to download data that is new or infrequently-accessed.��This Web-like approach presents several technical problems which must be solved, and we solve them as follows: (1) Caching, linking, and URL support is implemented via Microsoft’s Sweeper SDK; (2) resource synchronization is managed by Unreal’s resource manager, a C++ component which maintains a database of all textures, models, levels, and other items required for gameplay, and maintains coherency even during name and version collisions.��Another issue to consider is that of size: Unreal levels and textures tend to be many times larger in size than the typical Web page. Thus, a new player may face a delay of between 20 seconds and several minutes when entering a new, uncached site with a 28.8 connection. Thus we will be recommending that third-party level designers utilize the existing textures and models which we ship with the game, rather than external content, when possible.

On the Internet, latency times from 200 msec to 500 msec are common, which presents playability problems in fast action games. Our implementation avoids all control response time issues by giving players autonomy over their own movement and actions, an area where Unreal’s client/server architecture is hacked in order to improve performance. However, the opponent and enemy visual latency problems remain, which we intend to hide by creating specific multiplayer levels which primarily use enemies and weapons with delayed or fuzzy targeting responses, such as large fireballs and heat-seeking missiles.

The client/server gaming approach consumes far more bandwidth from the server to the client than typical PC games. To minimize the data flow, we will compress the rendering data by removing redundant information. We expect that we can reduce the bandwidth requirement to 20 bytes per visible actor per frame. This will enable Unreal to play smoothly on 28.8 modems in nearly all play circumstances, though the game would slow down substantially in degenerate situations, such as having 30 players moving around in one room.

Unreal MMX features

The following enhancements will be present in the MMX-enhanced version of Unreal:

24-bit color rendering. Each texture has its own unique palette, enabling the artwork to be rendered in far more realistic detail than if the entire game were mapped to one 256-color palette. Using a unique palette for each texture enables the game to gain 95% of the visual quality of pure 24-bit color artwork, while consuming only 1/3rd of the RAM of 24-bit color art.

True color light sources. Every scene in Unreal is illuminated with true 24-bit color lighting, enabling realistic lighting and color effects such as blue moonglow outdoors, fiery orange torches illuminating dungeons, and a bright green glow cast from rocket explosions.

Enhanced 16-bit audio, allowing for special post-processing effects, stereo panning, and Doppler shifting effects in the audio track.

The following additional enhancements will be added if time permits and if we are able to optimize the effects sufficiently:

Volumetric lighting effects, such as spheres of light illuminated around light sources in foggy areas, and dusty patches of air illuminated by light shining in through a castle window.

Other time-permitting features:

The MMX OEM version of Unreal will, at a minimum, support network and modem play including support for TCP/IP and DirectPlay. The TCP/IP support will enable Internet play, though due to time constraints, Internet play responsiveness in the initial OEM version may not be up to the standard we are aiming for in the shareware and retail releases. We may also have to limit the network server to one simultaneous level if we are unable to complete and fully test the multi-threading, multi-level server code in time for first commercial shipment.

As the shareware/retail versions of Unreal and future upgrades pass through our beta-testing process, we will upgrade the Intel OEM version of Unreal to support all of the latest technology and features of the then-current version.

CONFIDENTIAL

�PAGE �

�PAGE �5�

Unreal Technical Design Document

Operating System Level

Network Driver

DirectPlay

WinSock

Sweeper SDK

DirectDraw

Audio Subsystem

Game/AI Support DLL

Game Content

Game Scripts

Engine Level

Unreal Network Server

3D Rendering

Content Level

DirectAudio

Unreal Engine

