

November 2004

User Guide

nvDXTLib Compression /
Decompression Library

November 2004

Introduction

The compression library accepts uncompressed data and writes out compressed MIP
maps either to the function call WriteDTXnFile or an app supplied callback.

The formats supported are:

• RGBA – red, green, blue, aplah. 8 bits per color channel. 4 color channels
• RGB – red, green, blue. 8 bits per color channel. 3 color channels
• BGRA – blue, green, red, alpha. 8 bits per color channel, 4 color channels
• BGR – blue, green, red. 8 bits per color channel. 3 color channels
• RGBAImage structure. Defined in tPixel.h
• fpImage structure tPixel.h. 32 bit per color channel, floating point

See nvDXT.cpp for example for calling example.

nvDXTcompressRGBA, nvDXTcompressBGRA – Image compression.

Pass unsigned char * parameter in RGBA or BGRA order.

plane == 3 indicates no alpha is present.

nvDXTcompressVolumeRGBA, nvDXTcompressVolumeBGRA – volume texture
creation

nvDXTcompress32F – floating point input

nvDXTcompress – RGBAImage struct input

HRESULT nvDXTcompressRGBA(unsigned char * src_data, // pointer to data (24 or
32 bit)

unsigned long w, // width in texels
unsigned long h, // height in texels
DWORD byte_pitch,
CompressionOptions * options,
DWORD planes, // 3 or 4 color channels
MIPcallback callback = NULL, // callback for generated levels
RECT * rect = NULL); // subrect to operate on, NULL is whole image

November 2004 3

// define color order
HRESULT nvDXTcompressBGRA(unsigned char * src_data,
 unsigned long w, // width in texels
 unsigned long h, // height in texels
 DWORD byte_pitch,
 CompressionOptions * options,
 DWORD planes, // 3 or 4 color channels
 MIPcallback callback = NULL, // callback for generated levels
 RECT * rect = NULL);

HRESULT nvDXTcompressVolumeRGBA(unsigned char * src_data,
 unsigned long w, // width in texels
 unsigned long h, // height in texels
 unsigned long depth, // depth of volume texture
 DWORD byte_pitch,
 CompressionOptions * options,
 DWORD planes, // 3 or 4
 MIPcallback callback = NULL, // callback for generated levels
 RECT * rect = NULL); // subrect to operate on, NULL is whole image

HRESULT nvDXTcompressVolumeBGRA(unsigned char * src_data,

unsigned long w, // width in texels
unsigned long h, // height in texels
unsigned long depth, // depth of volume texture
DWORD byte_pitch,
CompressionOptions * options,
DWORD planes, // 3 or 4
MIPcallback callback = NULL, // callback for generated levels
RECT * rect = NULL); // subrect to operate on, NULL is whole image

// floating point input
HRESULT nvDXTcompress32F(fpImage & srcImage,

CompressionOptions * options,
MIPcallback callback = NULL, // callback for generated levels
RECT * rect = NULL); // subrect to operate on, NULL is whole image

HRESULT nvDXTcompress(RGBAImage & image,

CompressionOptions * options,
MIPcallback callback,
RECT * rect);

If callback is == 0 (or not specified), then WriteDTXnFile
is called with all file info instead of your callback

typedef HRESULT (*MIPcallback)(
void * data, // pointer to the data to compressed data
int miplevel, // what MIP level this is
DWORD size, // size of the data
int width, // width of MIP map
int height, // height of MIP map

November 2004 4

void * user_data); // user pointer

// You must write the routines (or provide stubs) for
WriteDTXnFile and ReadDTXnFile

void WriteDTXnFile(DWORD count, void * buffer, void * userData);

void ReadDTXnFile(DWORD count, void * buffer, void * userData);

See the file nvdxt_options.h for the definition of
CompressionOptions

 // error return codes
 #define DXTERR_INPUT_POINTER_ZERO -1
 #define DXTERR_DEPTH_IS_NOT_3_OR_4 -2
 #define DXTERR_NON_POWER_2 -3

Example callback to store compressed image in a Direct3D texture

HRESULT LoadAllMipSurfaces(void * data, int iLevel, DWORD size,
 int Width, int Height, void * user)
{
 HRESULT hr;
 LPDIRECT3DSURFACE9 psurf;
 D3DSURFACE_DESC sd;
 D3DLOCKED_RECT lr;

 hr = pCurrentTexture->GetSurfaceLevel(iLevel, &psurf);

 if (FAILED(hr))
 return hr;
 psurf->GetDesc(&sd);

 hr = pCurrentTexture->LockRect(iLevel, &lr, NULL, 0);

 if (FAILED(hr)) return hr;

 memcpy(lr.pBits, data, size);

 current_size += size;

 hr = pCurrentTexture->UnlockRect(iLevel);

 ReleasePpo(&psurf);

 mips_completed++;

 if(g_d3d) {
 g_d3d->Render3DEnvironment();
 }

 return 0;
}

November 2004 5

You link to different libraries depending on your compile options.
There are pragma that should link automatically to the correct library.

nvDXTLib.lib - release

nvDXTLibMT.lib – release multi-threaded

nvDXTLibMTDLL.lib – release multi-threaded dll

The _S options is used when _STATIC_CPPLIB is defined.

If you have existing MIP maps you must combine them so each MIP level is followed
by its next MIP level. Conceptually, it looks like this:

November 2004 6

Compression Options

CompressionOptions is the structure where you pass the compression options to the
compressor. See nvdxt_options.h for details about this structure.

MipMapType = dUseExistingMipMaps;
You specify how map MIP levels to write out
nvDXTcompress((unsigned char *)raw_data, width, height, pitch,
&options, depth, 0);

Decompression

To decompress an image use the nvDXTdecompress call to read all MIP chains into
one buffer:

unsigned char * nvDXTdecompress(int & w, int & h, int & depth,

int & total_width, int & rowBytes, int & src_format,
 int SpecifiedMipMaps = 0);

returns
pointer to image data
w : image width
h : image height
depth : number of bytes per pixel, 3 or 4

row_bytes: pitch of main image
The first image starts at 0, the next MIP map image starts at base + row_bytes, next
one starts at base + row_bytes / 2, etc.

src_format: format of the file
SpecifiedMipMaps. Load in only this number of MIP maps. zero means read all
MIP levels

pitch = row_bytes * 2

 see readdxt.cpp for example

NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050
www.nvidia.com

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”)
ARE BEING PROVIDED “AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS
ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation
assumes no responsibility for the consequences of use of such information or for any
infringement of patents or other rights of third parties that may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This
publication supersedes and replaces all information previously supplied. NVIDIA Corporation
products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks of NVIDIA Corporation.

Microsoft, Windows, the Windows logo, and DirectX are registered trademarks of Microsoft
Corporation.

OpenGL is a trademark of SGI. Other company and product names may be trademarks of the
respective companies with which they are associated.

Copyright

Copyright NVIDIA Corporation 2002

