
Easy SPURS Overview

© 2008 Sony Computer Entertainment Inc.
All Rights Reserved.

SCE Confidential

SCE CONFIDENTIAL

©SCEI PLAYSTATION®3 Programmer Tool Runtime Library

- 2 -

Table of Contents
1 Library Overview.. 3

Purpose and Characteristics ..3
Files ..3
Sample Programs...4

2 Using the Library ... 5
Basic Procedure ...5
Direct Use of libspurs APIs...6

3 Reducing the Context Save Area of a SPURS Task... 7
Background ..7
Overview ..7
Operational Procedure ...7

SCE CONFIDENTIAL

©SCEI PLAYSTATION®3 Programmer Tool Runtime Library

- 3 -

1 Library Overview

Purpose and Characteristics

(1) Simplified SPURS APIs

Easy SPURS is a C++ class library provided to make it easier for developers to write codes using libspurs.
It simplifies the complicated initialization procedure carried out by the interfaces of libspurs. Easy SPURS
is just a wrapper of libspurs; it does not provide any additional features to SPURS.

(2) Exclusively for C++

Easy SPURS is exclusively for C++. It uses features specific to C++, such as, function overloading and
default argument values, in order to simplify the steps for using libspurs.

(3) No dynamic internal memory allocation

Easy SPURS does not internally carry out dynamic memory allocation. Memory management is left up to
the user.

(4) Simultaneous use with libspurs APIs

Easy SPURS does not hide libspurs APIs. For the features that are not supported by Easy SPURS, directly
use the interfaces provided by libspurs. Easy SPURS is designed to be compatible with libspurs APIs. For
example, in a function that requires a pointer to CellSpurs, a pointer to class Spurs can be passed
instead.

Files
The following files are required for using Easy SPURS.

VisualStudio

Refer to the solution file as reference, and set dependency relationships. Add
samples/common/spurs/ppu to the additional include directory, and add –lspurs_lib to the additional
dependency file, to set a dependency relationship to spurs_util_ppu.vcproj and from
spurs_util_ppu.vcproj to job/notify.vcproj.

Table 1 List of Files related to VisualStudio
Filename Description
samples/common/spurs/Easy_SPURS.sln Solution
samples/common/spurs/ppu/spurs_util_ppu.vcproj Project
samples/common/spurs/ppu/job/notify.vcproj Project
samples/common/spurs/ppu/spurs_util.h Header file

SCE CONFIDENTIAL

©SCEI PLAYSTATION®3 Programmer Tool Runtime Library

- 4 -

Make

Add the include path and library path to samples/common/spurs/ppu/, and add –lspurs_util and
lspurs_stub to the link target library. If you are using a common format makefile, include
samples/common/spurs/libspurs_util.mk before the footer to perform the above processing.

Table 2 List of Files related to Make
Filename Description
samples/common/spurs/ppu/spurs_util.h Header files
samples/common/spurs/ppu/libspurs_util.a Library files
samples/common/spurs/libspurs_util.mk Common-format makefile as the makefile

Sample Programs
Sample programs using Easy SPURS can be compiled as follows.

Table 3 List of Easy SPURS Samples
Directory Name Execution Filename Description
samples/common/spurs/sample1_hello_job hello_job.self Easy job sample
samples/common/spurs/sample2_hello_task hello_task.self Easy task sample

VisualStudio

Open samples/common/spurs/Easy_Spurs.sln with VisualStudio and build the solution to compile all
samples.

Make

Execute make in each sample's directory.

SCE CONFIDENTIAL

©SCEI PLAYSTATION®3 Programmer Tool Runtime Library

- 5 -

2 Using the Library

Basic Procedure
The procedure for using Easy SPURS consists of the following steps.

(1) Allocate memory
(2) Initialize
(3) Wait for completion and free memory

The steps for displaying "hello, world" on a SPURS task are exemplified below. Note that error handling
has been omitted in this example to simplify the procedural steps.

#include <spurs_util.h>
using namespace cell::Util::Spurs;

// Step 1. Initialize the SPURS instance
Spurs* spurs = (Spurs*)std::memalign(Spurs::ALIGN, sizeof(Spurs));
Spurs::initialize(spurs, "sample");

// Step 2. Initialize the SPURS task set
Taskset* taskset = (Taskset*)std::memalign(Taskset::ALIGN, sizeof(Taskset));
Taskset::create(taskset, "sample", spurs, 0);

// Step 3. Create the SPURS task
Task* task = (Task*)std::memalign(Task::ALIGN, sizeof(Task));
Task::create(task, taskset, _binary_task_hello_elf_start, 0);

//
// "hello, world" appears
//

// Wait for the completion of the SPURS task
task->join();
std::free(task);

// Wait for the completion of the SPURS task set
taskset->shutdown();
taskset->join();
std::free(taskset);

// Terminate the SPURS instance
spurs->finalize();
std::free(spurs);

SCE CONFIDENTIAL

©SCEI PLAYSTATION®3 Programmer Tool Runtime Library

- 6 -

(1) Allocate memory

Allocate memory for classes accessed by SPUs (see Table 4) and their derivative classes (e.g. class
CommandListDispatcher) where they can be accessed by SPUs. Do not create instances of these classes as
automatic variables because it is impossible for SPUs to access the stack memory of a PPU.

Memory areas to be allocated must be aligned to the specified boundary. Because memory cannot be
properly aligned when used, do not use the default new operator.

Table 4 Classes Accessed by SPUs
Class Name Alignment Initialize Method Description
Spurs Spurs::ALIGN initialize() Derivative of CellSpurs
JobChain JobChain::ALIGN create() Derivative of CellSpursJobChain
JobGuard JobGuard::ALIGN initialize() Derivative of CellSpursJobGuard
Job::Descriptor 16 Job descriptor base class
Job::Command 8 Job command base class
EventFlag EventFlag::ALIGN initialize() Derivative of CellSpursEventFlag
Taskset Taskset::ALIGN create() Derivative of CellSpursTaskset
Task Task::ALIGN create() SPURS task termination synchronization

(2) Initialize

Before using the instances of classes with initializing method in Table 4 and their derivative classes (e.g.
class CommandListDispatcher), make sure to initialize them using the respective initialization functions.
There is no need to use placement new.

(3) Wait for completion and free memory

Before freeing the memory for an instance of class Spurs, class Taskset, class Task, class JobChain, or class
CommandListDispatcher, make sure to check that it has been terminated. Any of these instances may be
accessed by SPUs until its termination is confirmed.

Direct Use of libspurs APIs
Pointers to instances of classes accessed by SPUs (see Table 4) and their derivative classes are directly
usable in functions provided by libspurs. For example, a pointer to an instance of class Spurs can be used
in a SPURS job chain.

#include <spurs_util.h>
using namespace cell::Util::Spurs;

Spurs* spurs = (Spurs*)std::memalign(Spurs::ALIGN, sizeof(Spurs));
Spurs::initialize(spurs, "sample")

CellSpursJobChain* jobChain = (CellSpursJobChain*)memalign(128,
sizeof(CellSpursJobChain));
CellSpursJobChainAttribute attribute;
/*
 * snip initializing attributes
 */
cellSpursCreateJobChainWithAttribute(spurs, jobChain, &attribute);

SCE CONFIDENTIAL

©SCEI PLAYSTATION®3 Programmer Tool Runtime Library

- 7 -

3 Reducing the Context Save Area of a SPURS Task

Background
A SPURS task requires memory for saving its context when waiting for the progress of some other
processing using the synchronization library. Close to 240 KB is required to save its entire context.
However, it is possible to reduce the total area to be saved by selectively saving certain parts of the
context.

Overview
Class TaskElf uses ELF segment information of a SPURS task, which can also be referenced from the PPU,
to enable the specification of the LS context areas to save. ELF segment information refers to the
information that is generally used to load a program; note that it is different from the ELF section
information. SPURS task modules also use this ELF segment information when transferring SPURS tasks
from main memory onto the LS.

Operational Procedure
This section describes operational procedure using an example of a SPURS task with the following ELF
segment layout.

% spu-lv2-readelf -l task/wait.elf

Elf file type is EXEC (Executable file)
Entry point 0x3088
There are 3 program headers, starting at offset 52

Program Headers:
 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
 LOAD 0x000100 0x00003000 0x00003000 0x00ac0 0x00ac0 R E 0x80
 LOAD 0x000c00 0x00003b00 0x00003b00 0x00010 0x00020 RW 0x80
 NOTE 0x000c10 0x00000000 0x00000000 0x00034 0x00034 R 0x4

 Section to Segment mapping:
 Segment Sections...
 00 .SpuGUID .text .rodata
 01 .ctors .dtors .bss
 02 .note.spu_name

ELF segments are listed under Program Headers. A segment whose Type is LOAD and Flg is R, is
read-only. A segment whose Type is LOAD and Flg is RW, is a read-write enabled segment.

Exclude read-only segments

The simplest approach to reducing the amount of memory for saving a context is to exclude the read-only
ELF segments. When executing a task whose context has been partially saved, the SPURS task module
will automatically load the read-only segments from the ELF. Thus, this approach enables the save area to
be reduced without applying any restrictions to the program of the SPURS task.

#include <spurs_util.h>
using namespace cell::Util::Spurs;
extern const char _binary_task_wait_elf_start[];

TaskElf elf(_binary_task_wait_elf_start);
elf.setAll();
elf.unsetReadOnlySegment();

SCE CONFIDENTIAL

©SCEI PLAYSTATION®3 Programmer Tool Runtime Library

- 8 -

unsigned size = elf.saveBufferSize();
void* buf = std::memalign(TaskElf::SaveBufferAlign(), size);
int ret = Task::create(task, taskset, elf, 0, buf, size));
assert(ret == CELL_OK);
// ...
ret = task->join();
assert(ret == CELL_OK);
std::free(buf);

Exclude read-only segments and the heap memory

Another approach is to save writable ELF segments and the stack memory. Read-only segments and the
heap memory are not saved. This approach is effective on programs that do not use heap memory
functions, such as, malloc() and the new operator.

#include <spurs_util.h>
using namespace cell::Util::Spurs;
extern const char _binary_task_wait_elf_start[];

TaskElf elf(_binary_task_wait_elf_start);
elf.unsetAll();
elf.setWritableSegment();
elf.setStack(2048);

unsigned size = elf.saveBufferSize();
void* buf = std::memalign(TaskElf::SaveBufferAlign(), size);
int ret = Task::create(task, taskset, elf, 0, buf, size));
assert(ret == CELL_OK);
// ...
ret = task->join();
assert(ret == CELL_OK);
std::free(buf);

	Easy SPURS Overview
	1 Library Overview
	Purpose and Characteristics
	Files
	Sample Programs

	2 Using the Library
	Basic Procedure
	Direct Use of libspurs APIs

	3 Reducing the Context Save Area of a SPURS Task
	Background
	Overview
	Operational Procedure

