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Introduction 

The compression library accepts uncompressed data and writes out compressed MIP 
maps either to the function call WriteDTXnFile or an app supplied callback. 

The formats supported are: 

• RGBA – red, green, blue, aplah. 8 bits per color channel. 4 color channels 
• RGB – red, green, blue. 8 bits per color channel. 3 color channels 
• BGRA – blue, green, red, alpha. 8 bits per color channel, 4 color channels 
• BGR – blue, green, red. 8 bits per color channel. 3 color channels 
• RGBAImage structure. Defined in tPixel.h 
• fpImage structure tPixel.h.  32 bit per color channel, floating point 

See nvDXT.cpp for example for calling example. 

nvDXTcompressRGBA, nvDXTcompressBGRA – Image compression.   

Pass unsigned char * parameter in RGBA or BGRA order.  

plane == 3 indicates no alpha is present. 

nvDXTcompressVolumeRGBA, nvDXTcompressVolumeBGRA – volume texture 
creation 

nvDXTcompress32F – floating point input 

nvDXTcompress – RGBAImage struct input 

HRESULT nvDXTcompressRGBA(unsigned char * src_data, // pointer to data (24 or 
32 bit) 

unsigned long w, // width in texels 
unsigned long h, // height in texels 
DWORD byte_pitch, 
CompressionOptions * options, 
DWORD planes, // 3 or 4 color channels 
MIPcallback callback = NULL,  // callback for generated levels 
RECT * rect = NULL);   // subrect to operate on, NULL is whole image 
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// define color order 
HRESULT nvDXTcompressBGRA(unsigned char * src_data,  
 unsigned long w, // width in texels 
 unsigned long h, // height in texels 
 DWORD byte_pitch, 
 CompressionOptions * options, 
 DWORD planes, // 3 or 4 color channels 
 MIPcallback callback = NULL,  // callback for generated levels 
 RECT * rect = NULL); 
 
 
 
HRESULT nvDXTcompressVolumeRGBA(unsigned char * src_data,  
 unsigned long w, // width in texels 
 unsigned long h, // height in texels 
 unsigned long depth, // depth of volume texture 
 DWORD byte_pitch, 
 CompressionOptions * options, 
 DWORD planes, // 3 or 4 
 MIPcallback callback = NULL,  // callback for generated levels 
 RECT * rect = NULL);   // subrect to operate on, NULL is whole image 
 
HRESULT nvDXTcompressVolumeBGRA(unsigned char * src_data,  

unsigned long w, // width in texels 
unsigned long h, // height in texels 
unsigned long depth, // depth of volume texture 
DWORD byte_pitch, 
CompressionOptions * options, 
DWORD planes, // 3 or 4 
MIPcallback callback = NULL,  // callback for generated levels 
RECT * rect = NULL);   // subrect to operate on, NULL is whole image 

 
 
// floating point input 
HRESULT nvDXTcompress32F(fpImage & srcImage, 

CompressionOptions * options, 
MIPcallback callback = NULL,  // callback for generated levels 
RECT * rect = NULL);   // subrect to operate on, NULL is whole image 

 
 
HRESULT nvDXTcompress(RGBAImage & image, 

CompressionOptions * options, 
MIPcallback callback, 
RECT * rect);     
 

If callback is == 0 (or not specified), then WriteDTXnFile 
is called with all file info instead of your callback 
  
 
typedef HRESULT (*MIPcallback)( 
void * data, // pointer to the data to compressed data 
int miplevel, // what MIP level this is 
DWORD size, // size of the data 
int width,   // width of MIP map 
int height,   // height of MIP map 
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void * user_data);  // user pointer 
 

// You must write the routines (or provide stubs) for 
WriteDTXnFile and ReadDTXnFile 
 
void WriteDTXnFile(DWORD count, void * buffer, void * userData); 

void ReadDTXnFile(DWORD count, void * buffer, void * userData); 

See the file nvdxt_options.h for the definition of 
CompressionOptions  

 
    // error return codes 
  #define DXTERR_INPUT_POINTER_ZERO -1 
  #define DXTERR_DEPTH_IS_NOT_3_OR_4 -2 
  #define DXTERR_NON_POWER_2 -3 
     
 
Example callback to store compressed image in a Direct3D texture 
     
HRESULT LoadAllMipSurfaces(void * data, int iLevel, DWORD size,  
            int Width, int Height, void * user) 
{ 
    HRESULT hr; 
    LPDIRECT3DSURFACE9 psurf; 
    D3DSURFACE_DESC sd; 
    D3DLOCKED_RECT lr; 
        
    hr = pCurrentTexture->GetSurfaceLevel(iLevel, &psurf); 
     
    if (FAILED(hr)) 
        return hr; 
    psurf->GetDesc(&sd); 
              
    hr = pCurrentTexture->LockRect(iLevel, &lr, NULL, 0); 
 
    if (FAILED(hr)) return hr; 
 
    memcpy(lr.pBits, data, size); 
 
    current_size += size; 
 
    hr = pCurrentTexture->UnlockRect(iLevel); 
 
    ReleasePpo(&psurf); 
     
    mips_completed++; 
 
    if(g_d3d) { 
        g_d3d->Render3DEnvironment(); 
    } 
 
    return 0; 
} 
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You link to different libraries depending on your compile options.   
There are pragma that should link automatically to the correct library. 

nvDXTLib.lib - release 

nvDXTLibMT.lib – release multi-threaded 

nvDXTLibMTDLL.lib – release multi-threaded dll 

The _S options is used when _STATIC_CPPLIB is defined. 

 
If you have existing MIP maps you must combine them so each MIP level is followed 
by its next MIP level.  Conceptually, it looks like this:  
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Compression Options 

CompressionOptions is the structure where you pass the compression options to the 
compressor.  See nvdxt_options.h for details about this structure. 
 

MipMapType = dUseExistingMipMaps; 
You specify how map MIP levels to write out 
nvDXTcompress((unsigned char *)raw_data, width, height, pitch, 
&options, depth, 0); 

 

Decompression 

To decompress an image use the nvDXTdecompress call to read all MIP chains into 
one buffer:  
   
unsigned char * nvDXTdecompress(int & w, int & h, int & depth,  

int & total_width, int & rowBytes, int & src_format, 
    int SpecifiedMipMaps = 0); 

   
returns  
pointer to image data 
w : image width  
h : image height  
depth : number of bytes per pixel, 3 or 4  
     
row_bytes: pitch of main image  
The first image starts at 0, the next MIP map image starts at base + row_bytes, next 
one starts at  base + row_bytes / 2, etc.  
   
src_format: format of the file  
SpecifiedMipMaps.  Load in only this number of MIP maps.  zero means read all 
MIP levels  
   
pitch = row_bytes * 2  

        see readdxt.cpp for example 
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