
NVIDIA Proprietary

Shader Combining with
NVLINK & NVASM

Shader Combining with
NVLINK & NVASM

Chris Maughan

NVIDIA Proprietary

Problem Statement

• Typically require many shading effects on one set
of polygons
• Custom Lighting
• Custom Transform
• Pixel shader setup (basis vectors, etc.)

• Combining all relevant effects in one shader is
tricky
• Combinatoric nightmare
• Limited resources (128 instructions, 12 Registers,

etc.)

NVIDIA Proprietary

Solution

• NVASM + NVLINK
• NVASM assembles shader files into ‘fragments’
• NVLINK combines fragments into shaders

• Result is a combined shader that achieves result
and runs on target hardware

• Design goals
• Capable of generating shaders in-game (fast!)
• If at all possible, can make shader fit into hardware

limits (registers/instructions/constants)
• Easy to author fragments

NVIDIA Proprietary

NVASM

• NVASM creates .nvo object files from .nvf files
• Use ‘–f’ switch to enable fragment generation

• Typical fragment:
#beginfragment world_transform
dp4 r_worldpos.x, v_position, c_world0
dp3 r_worldpos.y, v_position, c_world1
dp4 r_worldPos.z, v_position, c_world2
#endfragment

NVIDIA Proprietary

NVASM code structure

• Fragment files can make use of ++, -- operators
on constants
dp3 r_lightintensity, r_normal, c_thislight++
add r_totallight, r_lightintensity, r_totallight

• This enables including the same fragment
multiple times, and auto-incrementing the
variable that is used (useful for items like lights)

• New constants created this way have the same
ID, but a different offset, so you can ask the linker
for each instance

NVIDIA Proprietary

NVASM code structure (2)

• Fragments are named in file
• (#beginfragment,#endfragment)

• Use symbol names for registers that are not
defined (e.g. c_world, v_pos)
• Assigned to real registers during link
• Can use standard register names for fixed

locations – linker will not re-assign fixed registers
• Useful if you have, say, a fixed constant-map
• But this reduces the linker’s ability to efficiently

combine fragments

NVIDIA Proprietary

Offline process - NVASM (3)

• NVASM outputs .nvo files
• Contain shader fragments
• Contain symbol table
• These are loaded by NVLINK

• NVASM is an off-line process
• Parsing/Macro processing is done off-line
• Shader syntax validation is done off-line

• Fragment files can not contain standard
vertex/pixel shaders, only fragments

NVIDIA Proprietary

NVLINK

• Supplied as .dll for in-game shader generation
• Linking is a two-step process

• Step 1 – Give the linker a list of all fragment files (1
file may contain several fragments). This is done
at game start – not during the scene!

• Step 2 – Ask the linker to generate a shader, based
on a list of fragment ID’s (retrieved from Step 1)

NVIDIA Proprietary

NVLINK – Pre-Process

• Supply a list of .nvf files
• .nvf files contain fragments that are ‘logically’

dependant:
• linker object assumes all fragments passed to it

contain symbols in the same ‘namespace’
• c_lightdirection in file ‘lights.nvf’ and c_lightdirection

in file ‘characterlight.nvf’ are the same symbol…
• Create another linker object if you have ‘sets’ of

shaders – ‘space station shaders’, ‘underground
shaders’, etc.

• Pre-built sets of shaders enable fastest run-time
link performance

NVIDIA Proprietary

NVLINK – Pre-Process (continued)

• Request list of fragment ID’s:
• GetFragmentID(char* pName)

• Linker returns fragment ID
• Arrays of ID’s are passed to linker to request a

shader create, eg:
• ID 0 = xform_eye_space
• ID 1 = xform_normal
• ID 2 = light_eye_space_directional
• ID 3 = light_eye_space_point
• [0,1,2] = Eye space directional lighting
• [0,1,3] = Eye space point lighting

NVIDIA Proprietary

NVLINK – Pre-Process (continued)

• Request list of constant ID’s:
• GetConstantID(char* pName)

• Linker returns constant ID
• ID is used after creating a shader to find out where

the constant was allocated (i.e. the constant
location required)

• Request list of vertex ID’s:
• GetVertexID(char* pName)

• Linker returns vertex ID
• ID is used after creating a shader to find out where

the vertex was allocated (i.e. the stream location
required)

NVIDIA Proprietary

NVLINK – Link Phase

• Generate Shader
• pShader = CreateBinaryShader(&hShader[0],

&pBuffer);
• Returned buffer is an NVLinkBuffer – similar

semantics to D3DXBuffer
• Pass returned buffer to CreateVertexShader

• Shader will be validated by runtime - this may well take
longer to run than the link phase!

• Call ->Release() on NVLinkBuffer
• Can call GetShaderSource() to get the sources for

the last generated shader – useful for debug, but
not fast!

NVIDIA Proprietary

NVLINK – Post-Link

• Call GetConstantSlot(ID, Offset, DWORD* pSlot) /
GetVertexSlot(ID, DWORD* pSlot)
• Stores slot in constant/vertex memory in ‘pSlot’

E.g. *pSlot = 3 means constant with this ID goes in
slot 3

• Some generated shaders may not require
‘v_diffuse’ (for example), so you can generate
vertex data that does not send it

• Letting the linker generate vertex and constant
slots for you gives more flexibility for
optimizations, but is more complex to code your
app

NVIDIA Proprietary

NVLINK – What it does (1)

• Pre-Process
• Resolves global symbol table for all fragments
• Hence fragments are semantically grouped

• Prepares internal fix-up lists for symbols in
fragments
• Enables fast location of symbol relocations required

• Generates ‘scope’ for parameters in fragment
instructions
• Enables variable re-use at link stage – at the per-

register component level (e.g. r1.x)
• Several other pre-process steps to ensure link

phase is fast as possible

NVIDIA Proprietary

NVLINK – What it does (2)

• Link-Phase
• Given set of fragment ID’s, splices together

fragment binaries
• Walks the shader assigning registers and retiring

unused registers for re-use
• Resulting code can look very different to what you

supplied, depending on how many symbols you
used
• More symbols give more flexibility in linking, but

slightly slower link performance (but target is to
handle many symbols very quickly)

• Generates lists of registers assignments for
constant and vertex streams

NVIDIA Proprietary

NVLINK – What it does (3)

• Link-Phase continued…
• May remove obvious redundant code

mov r0, r1 << redundant
Mad r4, r2, r3, r0 << replace r0 with r1

• Why not do this?
• Because it will replicate work done in the driver

• Why do this?
• Because it may be necessary to fit the code in the

available instruction memory…

NVIDIA Proprietary

NVLINK Performance

• Architected to be fast at the link phase, slow at
the preparation phase

• Performance measurements will be available
• Aim is to be fast enough to use during game-

scene
• Limiting factor may be performance of

CreateVertexShader(…)
• Causes work to be done in the driver preparing the

shader for the chip
• Also causes work to be done in the runtime

NVIDIA Proprietary

NVLINK Demo Effect

• Built into NVEffectsBrowser
• Demo

• T&L Pipeline demo, with specular/diffuse,
point/directional, eye space/object space, blinn
bump setup, etc.
• Useful as a demo of how to build a fixed-function

equivalent shader
• Employ advanced mesh builder to handle dynamic

allocation of constant/vertex stream data
• Benchmark option available to test create time of

shader

NVIDIA Proprietary

Questions, comments, feedback?

• Version 1.0 shipping
(www.nvidia.com/developer.nsf)

• Feedback welcome
• Chris Maughan, cmaughan@nvidia.com
• Questions?

