<

7ZZVIDIA.

Shader Combining with
NVLINK & NVASM

Chris Maughan

Problem Statement

- Typically require many shading effects on one set
of polygons

- Custom Lighting
- Custom Transform
- Pixel shader setup (basis vectors, etc.)

« Combining all relevant effects in one shader is
tricky

- Combinatoric nightmare
- Limited resources (128 instructions, 12 Registers,

etc.)
<

NVIDIA Proprietary RVIDIA.

Solution

NVASM + NVLINK

- NVASM assembles shader files into ‘fragments’
- NVLINK combines fragments into shaders

Result is a combined shader that achieves result
and runs on target hardware

Design goals

- Capable of generating shaders in-game (fast!)

- If at all possible, can make shader fit into hardware
limits (registers/instructions/constants)

- Easy to author fragments

<

NVIDIA Proprietary RVIDIA.

NVASM

 NVASM creates .nvo object files from .nvf files
- Use ‘—f’ switch to enable fragment generation

« Typical fragment:

#beginfragment world_transform

dp4 r_worldpos.x, v_position, c_world0

dp3 r_worldpos.y, v_position, c_world1

dp4 r_worldPos.z, v_position, c_world2
#endfragment

<

NVIDIA Proprietary RVIDIA.

NVASM code structure

 Fragment files can make use of ++, -- operators
on constants

dp3 r_lightintensity, r normal, c_thislight++
add r_totallight, r_lightintensity, r_totallight

This enables including the same fragment
multiple times, and auto-incrementing the
variable that is used (useful for items like lights)

New constants created this way have the same
ID, but a different offset, so you can ask the linker
for each instance

NVIDIA Proprietary RVIDIA.

NVASM code structure (2)

 Fragments are named in file

- (#beginfragment,#endfragment)

- Use symbol names for registers that are not
defined (e.g. ¢c_world, v_pos)

- Assigned to real registers during link

- Can use standard register names for fixed
locations — linker will not re-assign fixed registers

* Useful if you have, say, a fixed constant-map

* But this reduces the linker’s ability to efficiently
combine fragments

<

NVIDIA Proprietary RVIDIA.

Offline process - NVASM (3)

NVASM outputs .nvo files

- Contain shader fragments

- Contain symbol table

- These are loaded by NVLINK

NVASM is an off-line process

- Parsing/Macro processing is done off-line
- Shader syntax validation is done off-line

Fragment files can not contain standard
vertex/pixel shaders, only fragments

<

NVIDIA Proprietary RVIDIA.

NVLINK

- Supplied as .dll for in-game shader generation
* Linking is a two-step process

- Step 1 — Give the linker a list of all fragment files (1
file may contain several fragments). This is done
at game start — not during the scene!

- Step 2 — Ask the linker to generate a shader, based
on a list of fragment ID’s (retrieved from Step 1)

<

NVIDIA Proprietary RVIDIA.

NVLINK - Pre-Process

« Supply a list of .nvf files

- .nvf files contain fragments that are ‘logically’
dependant:

* linker object assumes all fragments passed to it
contain symbols in the same ‘namespace’

- c_lightdirection in file ‘lights.nvf’ and c_lightdirection
in file ‘characterlight.nvf’ are the same symbol...

* Create another linker object if you have ‘sets’ of
shaders — ‘space station shaders’, ‘'underground
shaders’, etc.

 Pre-built sets of shaders enable fastest run-time
link performance

JIVIDIA.

NVIDIA Proprietary

NVLINK — Pre-Process (continued)

* Request list of fragment ID’s:
* GetFragmentIiD(char* pName)
- Linker returns fragment ID

- Arrays of ID’s are passed to linker to request a
shader create, eg:

* ID 0 = xform_eye_space

ID 1 = xform_normal

ID 2 = light_eye_space_directional

ID 3 = light_eye _space_point

[0,1,2] = Eye space directional lighting
* [0,1,3] = Eye space point lighting

<

NVIDIA Proprietary RVIDIA.

NVLINK — Pre-Process (continued)

 Request list of constant ID’s:
* GetConstantiD(char* pName)
- Linker returns constant ID

- ID is used after creating a shader to find out where
the constant was allocated (i.e. the constant
location required)

 Request list of vertex ID’s:

* GetVertexIiD(char* pName)

- Linker returns vertex ID

- ID is used after creating a shader to find out where
the vertex was allocated (i.e. the stream location

required) @

NVIDIA Proprietary RVIDIA.

NVLINK - Link Phase

« Generate Shader

- pShader = CreateBinaryShader(&hShader[0],
&pBuffer);

* Returned buffer is an NVLinkBuffer — similar
semantics to D3DXBuffer

* Pass returned buffer to CreateVertexShader

- Shader will be validated by runtime - this may well take
longer to run than the link phase!

e Call ->Release() on NVLinkBuffer

« Can call GetShaderSource() to get the sources for
the last generated shader — useful for debug, but

not fast! @

NVIDIA Proprietary RVIDIA.

NVLINK - Post-Link

« Call GetConstantSlot(ID, Offset, DWORD* pSlot) /
GetVertexSlot(ID, DWORD* pSlot)

- Stores slot in constant/vertex memory in ‘pSlot’
E.g. *pSlot = 3 means constant with this ID goes in
slot 3

- Some generated shaders may not require
‘v_diffuse’ (for example), so you can generate
vertex data that does not send it

- Letting the linker generate vertex and constant
slots for you gives more flexibility for
optimizations, but is more complex to code your

app <

NVIDIA Proprietary RVIDIA.

NVLINK — What it does (1)

* Pre-Process
- Resolves global symbol table for all fragments
* Hence fragments are semantically grouped

- Prepares internal fix-up lists for symbols in
fragments

* Enables fast location of symbol relocations required

- Generates ‘scope’ for parameters in fragment
instructions

* Enables variable re-use at link stage — at the per-
register component level (e.g. r1.x)

- Several other pre-process steps to ensure link
phase is fast as possible @

NVIDIA Proprietary RVIDIA.

NVLINK — What it does (2)

« Link-Phase

- Given set of fragment ID’s, splices together
fragment binaries

- Walks the shader assigning registers and retiring
unused registers for re-use
* Resulting code can look very different to what you

supplied, depending on how many symbols you
used

* More symbols give more flexibility in linking, but
slightly slower link performance (but target is to
handle many symbols very quickly)

- Generates lists of registers assignments for é

constant and vertex streams
NVIDIA Proprietary RVIDIA.

NVLINK — What it does (3)

 Link-Phase continued...

- May remove obvious redundant code
mov r0, r1 << redundant
Mad r4, r2, r3, r0 << replace r0 with r1

 Why not do this?
- Because it will replicate work done in the driver
 Why do this?

- Because it may be necessary to fit the code in the
available instruction memory...

<

NVIDIA Proprietary RVIDIA.

NVLINK Performance

Architected to be fast at the link phase, slow at
the preparation phase

Performance measurements will be available

Aim is to be fast enough to use during game-
scene

- Limiting factor may be performance of
CreateVertexShader(...)

* Causes work to be done in the driver preparing the
shader for the chip

* Also causes work to be done in the runtime

<

NVIDIA Proprietary RVIDIA.

NVLINK Demo Effect

 Built into NVEffectsBrowser

 Demo

- T&L Pipeline demo, with specular/diffuse,
point/directional, eye space/object space, blinn
bump setup, etc.

* Useful as a demo of how to build a fixed-function
equivalent shader

* Employ advanced mesh builder to handle dynamic
allocation of constant/vertex stream data

* Benchmark option available to test create time of
shader

<

NVIDIA Proprietary RVIDIA.

Questions, comments, feedback?

Version 1.0 shipping
()

Feedback welcome
Chris Maughan,
Questions?

<

NVIDIA Proprietary NVIDIA.

