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Problem Statement

- Typically require many shading effects on one set
of polygons

- Custom Lighting
- Custom Transform
- Pixel shader setup (basis vectors, etc.)

« Combining all relevant effects in one shader is
tricky

- Combinatoric nightmare
- Limited resources (128 instructions, 12 Registers,

etc.)
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Solution

NVASM + NVLINK

- NVASM assembles shader files into ‘fragments’
- NVLINK combines fragments into shaders

Result is a combined shader that achieves result
and runs on target hardware

Design goals

- Capable of generating shaders in-game (fast!)

- If at all possible, can make shader fit into hardware
limits (registers/instructions/constants)

- Easy to author fragments
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NVASM

 NVASM creates .nvo object files from .nvf files
- Use ‘—f’ switch to enable fragment generation

« Typical fragment:

#beginfragment world_transform

dp4 r_worldpos.x, v_position, c_world0

dp3 r_worldpos.y, v_position, c_world1

dp4 r_worldPos.z, v_position, c_world2
#endfragment
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NVASM code structure

 Fragment files can make use of ++, -- operators
on constants

dp3 r_lightintensity, r normal, c_thislight++
add r_totallight, r_lightintensity, r_totallight

This enables including the same fragment
multiple times, and auto-incrementing the
variable that is used (useful for items like lights)

New constants created this way have the same
ID, but a different offset, so you can ask the linker
for each instance
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NVASM code structure (2)

 Fragments are named in file

- (#beginfragment,#endfragment)

- Use symbol names for registers that are not
defined (e.g. ¢c_world, v_pos)

- Assigned to real registers during link

- Can use standard register names for fixed
locations — linker will not re-assign fixed registers

* Useful if you have, say, a fixed constant-map

* But this reduces the linker’s ability to efficiently
combine fragments
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Offline process - NVASM (3)

NVASM outputs .nvo files

- Contain shader fragments

- Contain symbol table

- These are loaded by NVLINK

NVASM is an off-line process

- Parsing/Macro processing is done off-line
- Shader syntax validation is done off-line

Fragment files can not contain standard
vertex/pixel shaders, only fragments
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NVLINK

- Supplied as .dll for in-game shader generation
* Linking is a two-step process

- Step 1 — Give the linker a list of all fragment files (1
file may contain several fragments). This is done
at game start — not during the scene!

- Step 2 — Ask the linker to generate a shader, based
on a list of fragment ID’s (retrieved from Step 1)
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NVLINK - Pre-Process

« Supply a list of .nvf files

- .nvf files contain fragments that are ‘logically’
dependant:

* linker object assumes all fragments passed to it
contain symbols in the same ‘namespace’

- c_lightdirection in file ‘lights.nvf’ and c_lightdirection
in file ‘characterlight.nvf’ are the same symbol...

* Create another linker object if you have ‘sets’ of
shaders — ‘space station shaders’, ‘'underground
shaders’, etc.

 Pre-built sets of shaders enable fastest run-time
link performance
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NVLINK — Pre-Process (continued)

* Request list of fragment ID’s:
* GetFragmentIiD(char* pName)
- Linker returns fragment ID

- Arrays of ID’s are passed to linker to request a
shader create, eg:

* ID 0 = xform_eye_space

ID 1 = xform_normal

ID 2 = light_eye_space_directional

ID 3 = light_eye _space_point

[0,1,2] = Eye space directional lighting
* [0,1,3] = Eye space point lighting
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NVLINK — Pre-Process (continued)

 Request list of constant ID’s:
* GetConstantiD(char* pName)
- Linker returns constant ID

- ID is used after creating a shader to find out where
the constant was allocated (i.e. the constant
location required)

 Request list of vertex ID’s:

* GetVertexIiD(char* pName)

- Linker returns vertex ID

- ID is used after creating a shader to find out where
the vertex was allocated (i.e. the stream location

required) @
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NVLINK - Link Phase

« Generate Shader

- pShader = CreateBinaryShader(&hShader[0],
&pBuffer);

* Returned buffer is an NVLinkBuffer — similar
semantics to D3DXBuffer

* Pass returned buffer to CreateVertexShader

- Shader will be validated by runtime - this may well take
longer to run than the link phase!

e Call ->Release() on NVLinkBuffer

« Can call GetShaderSource() to get the sources for
the last generated shader — useful for debug, but

not fast! @

NVIDIA Proprietary RVIDIA.




NVLINK - Post-Link

« Call GetConstantSlot(ID, Offset, DWORD* pSlot) /
GetVertexSlot(ID, DWORD* pSlot)

- Stores slot in constant/vertex memory in ‘pSlot’
E.g. *pSlot = 3 means constant with this ID goes in
slot 3

- Some generated shaders may not require
‘v_diffuse’ (for example), so you can generate
vertex data that does not send it

- Letting the linker generate vertex and constant
slots for you gives more flexibility for
optimizations, but is more complex to code your

app <
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NVLINK — What it does (1)

* Pre-Process
- Resolves global symbol table for all fragments
* Hence fragments are semantically grouped

- Prepares internal fix-up lists for symbols in
fragments

* Enables fast location of symbol relocations required

- Generates ‘scope’ for parameters in fragment
instructions

* Enables variable re-use at link stage — at the per-
register component level (e.g. r1.x)

- Several other pre-process steps to ensure link
phase is fast as possible @
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NVLINK — What it does (2)

« Link-Phase

- Given set of fragment ID’s, splices together
fragment binaries

- Walks the shader assigning registers and retiring
unused registers for re-use
* Resulting code can look very different to what you

supplied, depending on how many symbols you
used

* More symbols give more flexibility in linking, but
slightly slower link performance (but target is to
handle many symbols very quickly)

- Generates lists of registers assignments for é

constant and vertex streams
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NVLINK — What it does (3)

 Link-Phase continued...

- May remove obvious redundant code
mov r0, r1 << redundant
Mad r4, r2, r3, r0 << replace r0 with r1

 Why not do this?
- Because it will replicate work done in the driver
 Why do this?

- Because it may be necessary to fit the code in the
available instruction memory...
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NVLINK Performance

Architected to be fast at the link phase, slow at
the preparation phase

Performance measurements will be available

Aim is to be fast enough to use during game-
scene

- Limiting factor may be performance of
CreateVertexShader(...)

* Causes work to be done in the driver preparing the
shader for the chip

* Also causes work to be done in the runtime
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NVLINK Demo Effect

 Built into NVEffectsBrowser

 Demo

- T&L Pipeline demo, with specular/diffuse,
point/directional, eye space/object space, blinn
bump setup, etc.

* Useful as a demo of how to build a fixed-function
equivalent shader

* Employ advanced mesh builder to handle dynamic
allocation of constant/vertex stream data

* Benchmark option available to test create time of
shader
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Questions, comments, feedback?

Version 1.0 shipping
( )

Feedback welcome
Chris Maughan,
Questions?
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